
 

International Integrated Intelligent Systems (IIIS), Volume 1 , Issue 2 

 

Enhanced Convolutional Neural Networks for 

MNIST Digit Recognition 
 

Ahmed Mohammed Gamal  

Faculty of Engineering 

Cairo University, Cairo, 

Egypt 

amgamal200111@gmail.com 

 

 

Mohammed El    Saeed 

Faculty of Engineering 

Cairo University 

Cairo, Egypt 

Mohammed.elsaeed1@gmail.

com

 

Mohaned Deif 

Department of Artificial 

intelligence, College of 

Information Technology, 

Misr University for Science 

& Technology, 
Mohanad.deif@must.edu.eg  

  

 

Rania Elgohary 

Department of Artificial 

intelligence, College of 

Information Technology, 

Misr University for Science 

& Technology, 
Rania.elgohary@must.edu.eg 

 

 

 

Abstract :This study addresses the ongoing pursuit of 

achieving optimal performance in digit recognition tasks, 

focusing on the widely studied MNIST dataset. Our motivation 

stems from the challenge of accurately classifying the 

remaining 1% of images, despite the relatively high 99% 

accuracy achieved by existing models. In this work, we present 

a simplified approach to convolutional neural network (CNN) 

architecture, aiming to streamline model complexity while 

maintaining or even enhancing performance. Unlike previous 

approaches, our methodology involves utilizing only two CNN 

layers with fewer filters, resulting in a reduction in model 

parameters and learning time. Through rigorous 

experimentation and evaluation, we demonstrate that our 

streamlined CNN architecture yields competitive results. Our 

findings underscore the importance of exploring alternative 

model architectures and optimization techniques to achieve 

state-of-the-art performance in digit recognition tasks. 
Keywords—Convolutional Neural Networks, 

MNIST dataset, Deep learning 

I. INTRODUCTION  

In the realm of digit recognition, achieving high accuracy 
rates is a cornerstone for various applications ranging from 
optical character recognition to automated sorting systems. 
The MNIST dataset, with its handwritten digit images, has 
long served as a benchmark for evaluating the efficacy of 
machine learning algorithms, particularly convolutional 
neural networks (CNNs). While existing solutions have 
demonstrated impressive accuracy rates exceeding 99%[1], 
they often encounter a bottleneck in terms of computational 
efficiency. One prominent challenge lies in the intricate 
balance between model complexity and computational cost, 
wherein the pursuit of higher accuracy often results in 
excessively deep networks with a plethora of parameters. 
The crux of this dilemma lies in the substantial training time 
required for deep networks, rendering them impractical for 
real-time applications. This paper delves into this pressing 
issue, aiming to reconcile the trade-off between accuracy and 
efficiency in digit recognition tasks. By reimagining the 
architectural design of CNNs, we seek to streamline model 
complexity while preserving or even enhancing accuracy. 

A. Input and the output 

The input to our digit recognition system consists of 
grayscale images of handwritten digits from the MNIST 
dataset [2], each image represented as a matrix of pixel 
values. These images serve as the raw data upon which our 
convolutional neural network operates. The output of the 
system is a classification label corresponding to the digit 

represented in the input image. Specifically, the system 
assigns a digit label (0-9) to each input image based on the 
digit it represents. Thus, the output is a categorical prediction 
indicating the recognized digit. Through this process, our 
goal is to develop a highly accurate and computationally 
efficient digit recognition system capable of handling real-
world applications. 

II. DATASET AND FEATURES 

The dataset utilized in this study is the well-known 
MNIST handwritten digit dataset, comprising a total of 
70,000 grayscale images of handwritten digits. This dataset 
is divided into 60,000 training examples and 10,000 test 
examples, providing a robust benchmark for evaluating the 
performance of digit recognition models. Each image in the 
dataset is a 28x28 pixel grayscale image, with pixel values 
ranging from 0 to 255. 

A. Preprocessing. 

We utilized max pooling after each convolutional layer to 
downsample the feature maps. Max pooling is a common 
technique in convolutional neural networks (CNNs) used to 
reduce the spatial dimensions of the feature maps while 
retaining the most important information. By performing 
max pooling, we effectively reduce the computational 
complexity of the network and help prevent overfitting by 
promoting spatial invariance. Additionally, max pooling aids 
in capturing the most prominent features in the input data, 
enhancing the network's ability to learn hierarchical 
representations. 

These examples showcase handwritten digits from the 
MNIST dataset, providing a glimpse into the variability and 
complexity of the dataset. Each image represents a different 
digit, ranging from 0 to 9, and serves as input to our digit 
recognition model. Through preprocessing and augmentation 
techniques, we aim to enhance the robustness and accuracy 
of our model in accurately classifying these handwritten 
digits. 

mailto:amgamal200111@gmail.com
mailto:Mohammed.elsaeed1@gmail.com
mailto:Mohammed.elsaeed1@gmail.com
mailto:Mohanad.deif@must.edu.eg
mailto:Rania.elgohary@must.edu.eg


 

International Integrated Intelligent Systems (IIIS), Volume 1 , Issue 2 

     

 

Fig. 1.  Images from the MNIST training set 

III. RELATED WORK 

Our study builds upon a foundation of existing research in 

the field of convolutional neural networks (CNNs) for image 

classification tasks. We categorize related papers into 

several groups based on their approaches and discuss their 

strengths, weaknesses, and relevance to our work. 

 

Deep CNN Architectures: Many recent studies have 

focused on developing deep CNN architectures with 

numerous convolutional and pooling layers to extract 

hierarchical features from images[4]. These models often 

achieve impressive classification accuracies but suffer from 

high computational complexity and increased training times. 

Notable examples include the VGG, ResNet, and DenseNet 

architectures, which have demonstrated state-of-the-art 

performance on various benchmark datasets. 

Efficient CNN Architectures: In response to the 

computational demands of deep CNNs, researchers have 

proposed more efficient architectures that prioritize model 

simplicity and parameter efficiency without sacrificing 

accuracy [5]. Examples include MobileNet[10], 

ShuffleNet[11], and EfficientNet[12], which utilize 

techniques such as depth-wise separable convolutions, 

channel shuffling, and neural architecture search to achieve 

a balance between accuracy and efficiency. 

 

Ensemble Methods: Ensemble learning techniques, 

which combine predictions from multiple models to 

improve overall performance, have gained popularity in 

image classification tasks [6]. Ensemble methods typically 

involve training multiple CNNs with diverse architectures or 

training data and aggregating their predictions through 

techniques such as averaging or voting. While ensemble 

methods often achieve higher accuracy than individual 

models, they may require significant computational 

resources and training time. 

 

Transfer Learning: Transfer learning approaches 

leverage pre-trained CNN models trained on large-scale 

datasets (e.g., ImageNet) and fine-tune them on specific 

classification tasks with smaller datasets[7]. This approach 

allows researchers to benefit from the feature extraction 

capabilities of pre-trained models while adapting them to 

new domains or tasks. Transfer learning has become a 

widely adopted strategy for achieving high classification 

accuracy with limited training data. 

 

Our study focuses on exploring simplified CNN 

architectures for image classification, specifically 

investigating models with fewer layers and parameters 

compared to traditional deep CNNs. While our approach 

shares similarities with efficient CNN architectures in terms 

of prioritizing model simplicity and efficiency, it differs in 

its emphasis on reducing complexity by employing fewer 

convolutional layers and utilizing max pooling instead of 

batch normalization. Furthermore, our study distinguishes 

itself by evaluating the performance of simplified models on 

image classification tasks and comparing them to both 

traditional deep CNNs and our own simplified architectures. 

 

The current state-of-the-art in image classification 

encompasses a diverse range of approaches, including deep 

CNN architectures, efficient models, ensemble methods, and 

transfer learning techniques. While deep CNNs continue to 

achieve impressive accuracy on benchmark datasets, there is 

a growing emphasis on developing more efficient 

architectures that balance accuracy with computational 

resources. Ensemble methods and transfer learning remain 

valuable strategies for improving classification performance, 

particularly in scenarios with limited training data. Moving 

forward, advancements in model efficiency, training 

techniques, and domain-specific optimizations are expected 

to drive further progress in the field of image classification 

IV. METHODS 

The original paper proposed a deep learning architecture 
consisting of multiple convolutional layers followed by a 
fully connected layer. Within each convolutional layer, a 2D 
convolution was performed, followed by 2D batch 
normalization and ReLU activation. Unlike conventional 
approaches, max pooling or average pooling was not used 
after convolution. Instead, a reduction in feature map size 
occurred after each convolution due to the absence of 
padding. To accommodate the reduction in feature map size, 
the number of channels was augmented after each layer. 
Upon reaching a sufficiently small feature map size, a fully 
connected layer established connections between the feature 
map and the final output. Dropout was omitted from this 
architecture. 

TABLE I.  METHODS COMPARISON 
 

Filter Size 
ORIGINAL MODEL 

PROPOSED 

MODEL 

(3, 3) 

16 Convolutional 

layers, each layer 

followed by a 1D 

Batch Normalization 

layer 
2 

Convolutional 

layers, each 

layer follow 

by a 2D Max 

Pooling layer 

(5, 5) 

12 Convolutional 

layers, each layer 

followed by a 1D 

Batch Normalization 

layer 

(7, 7) 

8 Convolutional 

layers, each layer 

followed by a 1D 

Batch Normalization 

layer 



 

International Integrated Intelligent Systems (IIIS), Volume 1 , Issue 2 

     

Three distinct networks were employed, differing solely 
in the kernel sizes of the convolution layers: 3×3, 5×5, and 
7×7. The number of layers varied for each network to 
account for the different size reductions in feature maps. 
Each network configuration was detailed in Figure 2 of the 
original paper[1]. 

In our approach, we introduced simpler models for each 
kernel size—3×3, 5×5, and 7×7—comprising only 2 
convolutional layers. These simplified models omitted batch 
normalization and employed max pooling instead. However, 
we maintained the same training parameters as the more 
complex models for consistency and comparative analysis. 

 

Fig. 2.  Visualization of Simplified CNN Architectures 

with 2 Convolutional Layers and Max Pooling. 

V. EXPERIMENTAL SETUP AND RESULTS 

For our experiments, we utilized default initialization 
methods in Keras to initialize network parameters [3]. We 
employed the Adam optimizer with a cross-entropy loss 
function for parameter optimization. The choice of a learning 
rate of 0.001 was based on empirical evidence and common 
practice, ensuring stable convergence during training. 
Additionally, we utilized a decaying factor of γ=0.98 to 

exponentially decay the learning rate, enhancing the 
convergence of the optimization process over time. 

To train our models, we used a batch size of 32, resulting 
in 1875 parameter updates per epoch. This batch size strikes 
a balance between computational efficiency and model 
convergence. Furthermore, we incorporated an exponential 
moving average of weights for evaluation, with a decay 
factor of 0.999. This technique helps improve generalization 
performance by smoothing out fluctuations in weight updates 
during training. 

A. Results 

 When training the original models—M3, M5, and M7—
the best results were achieved with remarkable accuracies. 
Specifically, M3 attained a peak accuracy of 99.86%, with a 
range spanning from 99.76% to 99.86%. The test accuracy 
for M3 stood at 98.86%. Moving to M5, the highest accuracy 
recorded was 99.94%, within a range of 99.87% to 99.94%, 
while the test accuracy was 98.98%. Lastly, M7 exhibited the 
highest accuracy among the original models, reaching 
99.97% with a range of 99.9% to 99.97%, accompanied by a 
test accuracy of 99.23%.  

Incorporating our own models—A3, A5, and A7—
yielded similarly impressive results. A3 achieved a peak 
accuracy of 99.91%, with a range spanning from 99.85% to 
99.91%, and a corresponding test accuracy of 98.54%. A5 
mirrored this success with a peak accuracy of 99.94%, within 
a range of 99.88% to 99.94%, and a test accuracy of 98.9%. 
Likewise, A7 demonstrated strong performance, achieving a 
peak accuracy of 99.92%, with a range of 99.88% to 99.92%, 
and a test accuracy of 98.98%. 

The results indicate that our models achieved accuracies 
comparable to those of the original models, showcasing the 
efficacy of our approach in achieving high classification 
accuracy. Moreover, our models exhibited significantly 
reduced execution times per epoch compared to their original 
counterparts. While M3 took 24 seconds per epoch, M5 took 
17 seconds, and M7 took 18 seconds, our models boasted 
substantially lower execution times of 6 seconds per epoch 
across all three variants. This reduction in execution time 
underscores the efficiency and practicality of our models, 
which achieve comparable results with reduced 
computational resources and model complexity. 

TABLE II.  RESULTS COMPARISON 

Criteria 
Original 

Model 
Proposed 

Model 

Accuracy 
(Best) 

M3: 99.86% 

M5: 99.94% 

M7: 99.97% 

A3: 99.91% 

A5: 99.94% 

A7: 99.92% 

Execution 
Time (Seconds 
per epoch) 

M3: 24 
seconds 

M5: 17 
seconds 

M7: 18 
seconds 

All: 6 seconds 

 



 

International Integrated Intelligent Systems (IIIS), Volume 1 , Issue 2 

     

 

 

 

Fig. 3.  Traditional   CNN 

  

 

 

Fig. 4. Proposed Models 

B. Discussion 

The results of our experiments demonstrate the efficacy 
of our simplified convolutional neural network (CNN) 
architectures in achieving high classification accuracy with 
reduced complexity and computational resources. Our 
models, denoted as A3, A5, and A7, consistently achieved 
peak accuracies comparable to those of the original models 
(M3, M5, M7), indicating that the reduction in model 
complexity did not compromise performance. 

One notable observation is the performance of our A5 
model, which achieved a peak accuracy of 99.94%, closely 
mirroring the highest accuracy attained by the original M5 
model. This suggests that by streamlining the architecture 
and employing max pooling instead of batch normalization, 
we were able to achieve comparable results while 
significantly reducing the computational overhead. 

Furthermore, our models exhibited substantially lower 
execution times per epoch compared to their original 
counterparts. While the original models took between 17 to 
24 seconds per epoch, our simplified models consistently 
required only 6 seconds per epoch. This reduction in 
execution time underscores the efficiency and practicality of 
our approach, particularly in scenarios where computational 
resources are limited or time constraints are stringent. 

However, it's important to acknowledge some limitations 
and areas for improvement in our approach. Firstly, while 
our simplified models demonstrated strong performance on 
the MNIST dataset, further evaluation on larger and more 
diverse datasets is necessary to assess their generalization 



 

International Integrated Intelligent Systems (IIIS), Volume 1 , Issue 2 

     

capabilities across different domains. Additionally, while 
max pooling proved to be effective in reducing 
computational overhead, exploring alternative pooling 
techniques or incorporating additional architectural 
modifications could further enhance the performance and 
versatility of our models. 

In terms of algorithmic choices, our decision to omit 
batch normalization and employ max pooling instead was 
motivated by the desire to reduce model complexity and 
execution time. While this approach yielded promising 
results, future investigations could explore the impact of 
different normalization techniques and pooling strategies on 
model performance. 

VI. CONCLUSION 

 In conclusion, our study investigated the efficacy of 

simplified convolutional neural network (CNN) 

architectures for image classification tasks, focusing on 

models with fewer layers and parameters compared to 

traditional deep learning approaches. Through our 

experiments, we introduced three simplified models (A3, 

A5, A7) with only two convolutional layers each, employing 

max pooling instead of batch normalization and achieving 

comparable accuracies to the original models (M3, M5, 

M7). 

 Among the original models, M7 exhibited the highest 

peak accuracy, followed closely by M5 and M3. However, 

our simplified models, particularly A5, demonstrated 

similarly impressive performance with significantly reduced 

execution times per epoch. This suggests that the 

complexity of the architecture does not necessarily correlate 

with classification accuracy, as our simpler models achieved 

comparable results while requiring fewer computational 

resources. 

 The success of our simplified models can be 

attributed to several factors, including the efficient use of 

max pooling, reduced model complexity, and optimized 

hyperparameters. Max pooling helped capture important 

features while reducing computational overhead, leading to 

faster training times without compromising accuracy. 

Additionally, the streamlined architecture of our models 

allowed for more efficient parameter optimization, 

contributing to their robust performance. 

 For future work, we envision several avenues for 

exploration. With additional time and computational 

resources, we could conduct further experiments to fine-tune 

hyperparameters and explore alternative optimization 

techniques. Additionally, expanding our study to encompass 

larger datasets and more diverse image classification tasks 

would provide valuable insights into the scalability and 

generalization capabilities of our simplified models. 

 Furthermore, investigating the impact of 

incorporating additional architectural modifications, such as 

skip connections or residual blocks, could enhance the 

performance and versatility of our models. Collaboration 

with multidisciplinary teams or leveraging advanced 

computational infrastructure could facilitate more extensive 

experimentation and accelerate the development of efficient 

CNN architectures for various real-world applications. 

 In summary, our study highlights the potential of 

simplified CNN architectures for achieving high 

classification accuracy with reduced complexity and 

computational resources. By continuing to explore and 

refine these models, we can contribute to the ongoing 

advancement of efficient deep learning techniques and their 

practical applications in diverse domains. 

 
[1] An, S., Lee, M., Park, S., Yang, H., & So, J. (2020). An 

ensemble of simple convolutional neural network models for 
mnist digit recognition. arXiv preprint arXiv:2008.10400. 

[2] LeCun, Y., Cortes, C., & Burges, C. (2010). MNIST 
handwritten digit database.K. Elissa, “Title of paper if 
known,” unpublished. 

[3] Gulli, A., & Pal, S. (2017). Deep learning with Keras. Packt 
Publishing Ltd. 

[4] Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, 
Y., Al-Shamma, O., ... & Farhan, L. (2021). Review of deep 
learning: concepts, CNN architectures, challenges, 
applications, future directions. Journal of big Data, 8, 1-74. 

[5] Ma, N., Zhang, X., Zheng, H. T., & Sun, J. (2018). Shufflenet 
v2: Practical guidelines for efficient cnn architecture design. 
In Proceedings of the European conference on computer 
vision (ECCV) (pp. 116-131). 

[6] Dietterich, T. G. (2000, June). Ensemble methods in machine 
learning. In International workshop on multiple classifier 
systems (pp. 1-15). Berlin, Heidelberg: Springer Berlin 
Heidelberg. 

[7] Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., ... & 
He, Q. (2020). A comprehensive survey on transfer 
learning. Proceedings of the IEEE, 109(1), 43-76. 

[8] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., 
Citro, C., ... & Zheng, X. (2016). Tensorflow: Large-scale 
machine learning on heterogeneous distributed systems. arXiv 
preprint arXiv:1603.04467. 

[9] Chollet, F., & others. (2015). Keras [Software]. Retrieved 
from https://keras.io 

[10] Sinha, D., & El-Sharkawy, M. (2019, October). Thin 
mobilenet: An enhanced mobilenet architecture. In 2019 IEEE 
10th annual ubiquitous computing, electronics & mobile 
communication conference (UEMCON) (pp. 0280-0285). 
IEEE. 

[11] Zhang, X., Zhou, X., Lin, M., & Sun, J. (2018). Shufflenet: 
An extremely efficient convolutional neural network for 
mobile devices. In Proceedings of the IEEE conference on 
computer vision and pattern recognition (pp. 6848-6856). 

[12] Atila, Ü., Uçar, M., Akyol, K., & Uçar, E. (2021). Plant leaf 
disease classification using EfficientNet deep learning 
model. Ecological Informatics, 61, 101182. 

 

 

https://keras.io/

