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Abstract—Abstract: This paper presents a driver drowsiness 
detection for accident prevention which is based on the curvature 
of the eye. Our attempt is to develop a deep learning model that 
can use the input from a camera in real time by extracting the eyes 
to detect the drowsiness of the drivers.This paper helps to resolve 
the problem of drowsiness detection with an accuracy of 96% for 
test and 99% for validation. 

I. INTRODUCTION AND PROBLEM STATEMENT 

Most fatalities and injuries among humans are caused by road 

accidents. According to the World Health Organization, injuries 

from road accidents claim one million lives annually 

worldwide. A driver puts themselves and other road users in 

danger when they nod off while operating a vehicle due to lack 

of sleep, fatigue, or other factors. According to studies on auto 

accidents, driving when sleepy is a major contributing factor to 

major auto accidents. These days, it is noted that the primary 

cause of drowsiness while driving is fatigue. Sleepiness is now 

the primary factor contributing to the rise in traffic accidents. In 

fact Numerous fatalities have resulted from drivers who were 

too tired to drive. Heavy trucks are among the many vehicles 

that are operated at night. Long-haul drivers have been proven 

to be more vulnerable to these kinds of incidents. Systems for 

detecting and monitoring drowsiness were developed in order 

to prevent it. Most of these models use one of the three 

techniques to detect the drowsiness levels, them being the 

physiological methods, behavioural methods, and vehicular 

based techniques. Some hybrid techniques which combine more 

than one technique have also been suggested to increase the 

accuracy of the prediction. 

II. RELATED WORK 

In a tender, a number of techniques were employed to 

increase the effectiveness and speed of the sleepiness detection 

process. This section’s primary focus is on the techniques and 

approaches previously employed to recognize drowsiness. The 

first approach is based on driving patterns, which additionally 

consider driving styles, road conditions, and characteristics of 

the vehicle. To ascertain your driving style, compute the amount 

of steering wheel movement or lane deviation. [1][2]. To keep 

a car in its lane when driving, one must maintain steady control 

of the steering wheel. Driver drowsiness was detected 86% of 

the time by Krajewski et al. [3] using the association between 

micro adjustments and fatigue. A lane deviation approach can 

also be used to ascertain the driver’s level of fatigue. Here, the 

car’s location in relation to a lane is monitored and analyzed to 

search for indicators of fatigue [4]. 

However, the driving patterns-based approaches rely on the 

type of vehicle, the driver, and the conditions of the road. 

Physiological detector data, including electrocardiogram ( 

ECG), electroencephalogram (EEG), and electrooculography ( 

EOG ) data, are utilized in the alternative category of 

approaches. EEG signals offer information about the activity of 

the brain. Three primary indications are utilized to determine a 

driver’s level of fatigue: delta, theta, and nascence signals. 

Theta and delta signals rise and nascence signals hardly alter in 

a tired driver. Based on a delicacy rate of more than 90, Mardi 

et al. [5] claim that this fashion is the most accurate system. The 

largest disadvantage of this approach, though, is that it is 

intrusive. Multiple detectors must be linked to the driver, which 

may not be pleasant. Conversely, non-intrusive bio signal types 

are far less accurate. All the previous papers were not practical 

for daily detection, they are either obstructive or depends on too 

many attributes. The last possible solution is detecting facial 

features including yawning, face position, and eye blinking, 

either separately or all together, Danisman et al. [6] monitors 

only eye blinking to detect drowsiness it detects visual changes 

in eye locations using a proposed horizontal symmetry feature 

of the eyes with a 94% accuracy with a 1% false positive rate. 

This was a great method but unfortunately the dataset was not 

accessible. Also this was similar to our method. A recurrent and 

convolutional neural network is proposed by Magan´ et al. [7] 

and implemented in a fuzzy logic-based system by extracting 

numeric features from image . Comparable accuracy is attained 

by both systems: roughly 65% accuracy over training data and 

60% accuracy over test data. Which was actually low but the 

system was similar to what we had in our mind. However, the 

fuzzy logicbased system is unique in that it achieves a 
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specificity of 93 % (i.e., the proportion of films in which the 

driver is not drowsy that are accurately identified) and doesn’t 

give false alerts which was its strength. Using various light 

sources, Chang et al.[8] chose the proper RGB channel to 

extract the LF/HF ratio from the HRV of the PPGI. The primary 

method for judging drowsiness in the suggested drowsiness 

detection system is the application of an algorithm to determine 

the percentage of closed eyelids and the 

sympathetic/parasympathetic nerve balance index. There are 30 

drowsy samples and 10 awake samples in the experiment. 

88.9% is the sensitivity which is not high if we want to 

implement real time detection. In another paper An artificial 

intelligence-based method for sleepiness detection is proposed 

by Fauzi et al. [9].In this study, a video featuring the driver’s 

face is captured using a webcam. The driver’s eyes are located 

in the face region using the Viola-Jones method, which is used 

for face detection. The technology will determine if the driver’s 

eye is awake or sleepy after performing some training analysis 

with accuracy 94 %. This was the closest paper to our method 

but unfortunately Viola-Jones method has some limitations 

such as the training process is slow due to the AdaBoost-based 

feature selection. It works best for frontally positioned faces but 

may struggle with tilted or side-profile faces which is bond to 

happen during driving. 

III. DATASET AND FEATURES 

We used a drowsiness detection dataset which classifies 

based on whether Eyes are Closed or Open from kaggle. The 

dataset was split into train and validation. We created a dataset 

for the test using the same conditions as the original dataset. For 

the train dataset we had 33,557 images for closed/drowsy eye 

and 34,362 for open/not drowsy eye. For the validation dataset 

we had 8,389 images for closed/drowsy eye and 8,590 for 

open/not drowsy eye. For the test dataset we had 1,057 images 

for closed/drowsy eye and 1,028 for open/not drowsy eye. The 

dataset was divided into 80For preprocessing this was based on 

the chosen pre-trained model.our implemented model was 

based on inceptionv3 model so we used its preprocessing in 

which the inputs pixel values are scaled between -1 and 1 also 

all images are resized to 80X80. For data augmentation We used 

random rotation with factor(-0.05, 0.05) and a fill mode with 

nearest. In addition to random zoom with height factor(-0.005, 

0.005) and width factor(-0.005, 0.005) and fill mode with 

nearest. Also we used random brightness with factor(-0.1, 0.09) 

and value range(-1, 1). 

A. Resnet50 Model 

  
Fig. 7. Resnet50 Architecture 

 

 

Fig. 3. validation Dataset: Opened Fig. 4. Validation Dataset: Closed 

 

Fig. 5. Testing Dataset: Opened Fig. 6. Testing Dataset: Closed 

IV. METHODS: 

We used two different architectures at first to make a short 

comparison based on model behaviour, the two architectures 

were Inception V3 and ResNet50. While both Inception V3 and 

ResNet50 are robust deep learning architectures commonly 

employed for image classification tasks, they diverge in their 

approaches. Inception V3 emphasises the extraction of multi-

scale features utilising inception modules, whereas ResNet50 

tackles the challenge of training exceptionally deep networks 

by incorporating residual connections. Ultimately, our decision 

to utilise Inception V3 stemmed from its superior accuracy 

compared to ResNet50. In scenarios where factors such as 

efficiency in parameter usage, multi-scale feature extraction, 

computational resource management, adaptability to various 

input sizes, or achieving state-of-the-art performance on 

specific tasks are pivotal, Inception V3 emerges as the preferred 

choice. 

 

 

Fig. 1. Train Dataset: Opened Fig. 2. Train Dataset: Closed  
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B. InecptionV3 Model 

 

Fig. 8. InceptionV3 Architecture 

C. Model Architecture: 

We utilized the pre-trained InceptionV3 model as the 

backbone for our drowsiness detection system. This model was 

initialized with input shape (80, 80, 3) and pre-trained weights 

from the ImageNet dataset. To enable fine-tuning of the model 

on our specific task, all layers of the InceptionV3 model were 

made trainable. 

 

Fig. 9. Model Architecture 

D. Custom Layers: 

We added custom layers on top of the pre-trained 

InceptionV3 model to adapt it for drowsiness detection. The 

global average pooling layer was applied to extract features 

from the last layer of the InceptionV3 model. Subsequently, 

dropout layers were introduced to prevent overfitting, with 

increased dropout rates compared to standard values. Two fully 

connected dense layers with ReLU activation and L2 

regularization were then employed to further process the 

extracted features. Finally, a sigmoid activation function was 

utilized in the output layer to produce probabilities indicating 

the likelihood of drowsiness. 

E. Training Setup: 

For optimization, we employed the Adam optimizer. The loss 

function utilized during training was the binary crossentropy 

loss, which is commonly used for binary classification tasks. 

Additionally, binary accuracy metrics were employed to 

evaluate the model’s performance during training and 

validation. The training procedure utilized a batch size 

determined by the total number of training samples and the 

desired number of steps per epoch. The loss function utilised 

during training was the binary cross-entropy loss, defined as: 

 

where: 

• L is the binary cross-entropy loss, 

• N is the number of samples, 

• yi is the true label for the i-th sample (0 or 1) , 

• pi is the predicted probability for the i-th sample being in 

the positive class (output of the sigmoid function). 

This comprehensive architecture and training setup were 

designed to effectively detect drowsiness using eye images, 

leveraging the capabilities of the InceptionV3 model while 

customising it for our specific task requirements. 

V. RESULTS 

A pre-trained InceptionV3 model is utilised for transfer 

learning. The model is initialised with weights pre-trained on 

the ImageNet dataset and its top layer is excluded as typically 

done in transfer learning scenarios. 

Two key hyperparameters are varied to observe their impact 

on model performance: learning rate and weight decay. 

Learning rates of 0.0001 and 0.001 are experimented with, as 

well as weight decay values of 5e-3 and 1e-4. This results in 

four distinct runs of the model, facilitating a comparative 

analysis. 

Additionally, other hyperparameters are set to further 

customise the model. Specifically, dropout rates are adjusted to 

combat overfitting. The dropout rates for the first and 

second/third dropout layers are set to 0.7 and 0.6, respectively, 

representing more aggressive regularization strategies 

compared to typical values. Moreover, a global average pooling 
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layer is employed to reduce the spatial dimensions of the input 

feature maps. Subsequent dense layers with ReLU activation 

functions and L2 regularization are added to facilitate feature 

extraction and reduce the risk of overfitting. 

By systematically varying these hyperparameters and 

observing their effects on model performance, a comprehensive 

understanding of the model’s behavior and its sensitivity to 

different settings can be gained. This rigorous experimentation 

and analysis contribute to the robustness and credibility of the 

research findings. 

For Learning Rate: 0.0001 & Weight Decay: 5e-3: 

 
Fig. 10. Training Accuracy for Fig. 11. Validation Accuracy for Learning Rate: 

0.0001, Weight De- Learning Rate: 0.0001, Weight Decay: 5e-3, cay: 5e-3 
 

The figures (Fig. 10 and Fig. 11) show the performance of an 

InceptionV3 model with a learning rate of 0.0001 and weight 

decay of 5×10−3. The training accuracy improves consistently, 

while the validation accuracy fluctuates, suggesting potential 

overfitting. 

 

For Learning Rate: 0.0001 & Weight Decay: 1e-4: 

 
Fig. 12. Training Accuracy for Fig. 13. Validation Accuracy for Learning Rate: 

0.0001, Weight De- Learning Rate: 0.0001, Weight Decay: 1e-4 cay: 1 e -4 
 

The second figure (Fig. 12 and Fig. 13) shows the model’s 

performance with a weight decay of 1×10−4. If the validation 

accuracy graph shows high volatility or a significant drop after 

a peak, it may indicate overfitting. 

For Learning Rate: 0.001 & Weight Decay: 5e-3: 

 

Fig. 14. Training Accuracy for Fig. 15. Validation Accuracy for Learning Rate: 

0.001, Weight Decay: Learning Rate: 0.001, Weight Decay: 
5e-3 5 e -3 

The figures show the performance of an InceptionV3 model 

with a learning rate of 0.001 and weight decay of 5 × 10−3. The 

training accuracy and validation accuracy trends can be 

observed in Fig. 14 and Fig. 15, respectively. 

 

For Learning Rate: 0.001 & Weight Decay: 1e-4: 

 

Fig. 16. Training Accuracy for Fig. 17. Validation Accuracy for Learning Rate: 

0.001, Weight Decay: Learning Rate: 0.001, Weight Decay: 
1e-4 1 e -4 

The figures show the performance of an InceptionV3 model 

with a learning rate of 0.001 and weight decay of 1 × 10−4. The 

training accuracy and validation accuracy trends can be 

observed in Fig. 16 and Fig. 17, respectively. 

TABLE I 
ACCURACY METRICS FOR DIFFERENT LEARNING RATES AND WEIGHT 

DECAYS 

 
Learning Rate: 0.0001 

Weight Decay: 5e-3 
Weight Decay: 1 e -

4 
Training 

Accuracy 
98.6% 99.2 % 

Validation 

Accuracy 
98% 99.1 % 

Testing Accuracy 94% 96 % 

 
Learning Rate: 0.001 

Weight Decay: 1e-4 
Weight Decay: 5 e -

3 
Training 

Accuracy 
99.2% 97.7 % 

Validation 

Accuracy 
99.1% 96.4 % 

Testing Accuracy 95% 73 % 

 

(2) 

Accuracy (ACC): This is the proportion of true results ( both 

true positives and true negatives) among the total number of 

cases examined. 

  (3) 

Precision (PR or PPV - Positive Predictive Value): 

This is the proportion of true positive results among the total 

number of positives predicted by the classifier. 

(4) 
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Recall (RC or TPR - True Positive Rate): This is the 

proportion of true positive results among the total number of 

actual positives. 

  (5) 

F1 Score: This is the harmonic mean of Precision and 

Recall, and it tries to find the balance between precision and 

recall. 

  (6) 

Specificity (SPC or TNR - True Negative Rate): This 

is the proportion of true negative results among the total number 

of actual negatives. 

  (7) 

False Positive Rate (FPR): This is the proportion of false 

positives among the total number of actual negatives. 

Before we dive into the results of each model, let’s briefly 

explain what a confusion matrix is. A confusion matrix is used 

to evaluate the performance of a classification model. The 

matrix has two rows and two columns, with the rows 

representing the actual labels and the columns representing the 

predicted labels. The color code seems to represent the number 

of instances in each cell, with darker shades indicating higher 

numbers. 

Confusion Matrix For the testing Datasets 

 

A. Resnet50 

 

Fig. 18. Confusion matrix for Learning Rate: 0.0001, Weight Decay: 5 e -3 

For the ResNet50 model (Figure 18), here’s a breakdown of 

the matrix: 

- ’Closed Eyes’ predicted as ’Closed Eyes’: 116 instances - 

’Closed Eyes’ predicted as ’Open Eyes’: 42 instances - ’Open 

Eyes’ predicted as ’Closed Eyes’: 6 instances - ’Open Eyes’ 

predicted as ’Open Eyes’: 151 instances 

The model was trained with a learning rate of 0.0001 and a 

weight decay of 5e-3. 

 

B. Inceptionv3 

 

Fig. 19. Confusion matrix for Learning Rate: 0.0001, Weight Decay: 5 e -3 

For the Inceptionv3 model (Figure 19), here’s a breakdown 

of the matrix: 

’Closed Eyes’ predicted as ’Closed Eyes’: 158 instances - 

’Closed Eyes’ predicted as ’Open Eyes’: 0 instances - ’Open 

Eyes’ predicted as ’Closed Eyes’: 18 instances - ’Open Eyes’ 

predicted as ’Open Eyes’: 140 instances. 

The model was trained with a learning rate of 0.0001 and a 

weight decay of 5e-3. As we saw better performance from the 

inceptionV3 model, we decided to proceed with it. 

 

Fig. 20. Confusion matrix for Learning Rate: 0.001, Weight Decay 5 e -3 

For the Inceptionv3 model (Figure 20), here’s a breakdown 

of the matrix: 

- ’Closed Eyes’ predicted as ’Closed Eyes’: 158 

instances ’Closed Eyes’ predicted as ’Open Eyes’: 0 instances 

- ’Open Eyes’ predicted as ’Closed Eyes’: 14 instances - 

’Open Eyes’ predicted as ’Open Eyes’: 143 instances 

The model was trained with a learning rate of 0.001 and a 

weight decay of 5e-3. 
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Fig. 21. Confusion matrix for Learning Rate: 0.0001, Weight Decay 1e-4 

For the Inceptionv3 model (Figure 21), here’s a breakdown 

of the matrix: 

- ’Closed Eyes’ predicted as ’Closed Eyes’: 158 

instances ’Closed Eyes’ predicted as ’Open Eyes’: 0 instances 

- ’Open Eyes’ predicted as ’Closed Eyes’: 14 instances  

- ’Open Eyes’ predicted as ’Open Eyes’: 143 instances 

The model was trained with a learning rate of 0.0001 and a 

weight decay of 1e-4. 

 

Fig. 22. Confusion matrix for Learning Rate: 0.001, Weight Decay: 1 e -4 

For the Inceptionv3 model (Figure 22), here’s a breakdown 

of the matrix: 

- ’Closed Eyes’ predicted as ’Closed Eyes’: 158 

instances - 

’Closed Eyes’ predicted as ’Open Eyes’: 0 instances - ’Open 

Eyes’ predicted as ’Closed Eyes’: 86 instances - ’Open Eyes’ 

predicted as ’Open Eyes’: 71 instances 

The model was trained with a learning rate of 0.001 and a 

weight decay of 5e-3. 

 

 

 

 

 

 

 

VI. CONCLUSION AND FUTURE WORK 

The paper outlines a thorough investigation into the 

performance of a pre-trained InceptionV3 model for transfer 

learning. Two critical hyperparameters, namely learning rate 

and weight decay, were systematically varied to observe their 

impact on model performance. Learning rates of 0.0001 and 

0.001 were tested alongside weight decay values of 5 e -3 and 

1e-4, resulting in four distinct model configurations for 

comparative analysis. 

Additionally, other hyperparameters such as dropout rates 

were fine-tuned to combat overfitting, with aggressive values of 

0.7 and 0.6 set for the first and subsequent dropout layers, 

respectively. The model architecture included a global average 

pooling layer followed by dense layers with ReLU activation 

functions and L2 regularization to facilitate feature extraction 

and mitigate overfitting risks. 

The experimentation yielded insightful results, showcasing 

the model’s sensitivity to different hyperparameter settings. 

Among the configurations tested, certain combinations 

demonstrated superior performance over others. For instance, a 

learning rate of 0.0001 paired with a weight decay of 1e4 

achieved the highest accuracy across training, validation, and 

testing datasets, indicating its effectiveness in learning 

discriminative features while mitigating overfitting. 

The summary table further highlights the performance 

metrics of each model configuration, with notable disparities in 

accuracy observed across different parameter settings. Notably, 

the model with a learning rate of 0.001 and weight decay of 1e-

4 exhibited lower accuracy on the testing dataset compared to 

other configurations, suggesting potential issues with 

generalization or overfitting. 

In conclusion, the rigorous experimentation and analysis 

conducted in this study contribute to a comprehensive 

understanding of the model’s behavior and its sensitivity to 

hyperparameter tuning. By identifying optimal configurations, 

researchers can enhance the performance and generalization 

capabilities of deep learning models for various tasks. For 

future exploration, we could experiment with various pretrained 

model architectures such as VGG, or EfficientNet to gauge their 

effectiveness for the task at hand. Fine-tuning these 

architectures or employing neural architecture search ( NAS ) 

methods could lead to the discovery of optimal models tailored 

to our specific dataset. 

Additionally, integrating attention mechanisms into the 

model architecture could enhance its interpretability and 

performance, especially when dealing with large datasets. 

Attention mechanisms enable the model to focus on relevant 

regions of input data, potentially improving both accuracy and 

insight into model decisions. 
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