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Abstract—Forecasting geomagnetic storms is crucial for 

mitigating their potential impacts on technology and 

infrastructure. This research explores the use of artificial 

intelligence (AI) techniques, particularly linear regression, and 

Long Short-Term Memory (LSTM) networks, for predicting 

geomagnetic storms using the OMNI dataset. The dataset, 

comprising various solar and interplanetary parameters, was 

preprocessed by scaling features and removing null values. A 

linear regression model achieved a Root Mean Squared Error 

(RMSE) of 5.95 and an R² score of 0.77. In contrast, the LSTM 

model, designed to capture temporal dependencies, significantly 

outperformed linear regression with an RMSE of 1.46 and an R² 

score of 0.99. These results demonstrate the potential of LSTM 

networks in accurately forecasting geomagnetic activity, thus 

providing a valuable tool for space weather prediction and the 

protection of critical technological systems. 

Keywords—Geomagnetic Storms; Forecasting; NASA; Deep 

learning; Machine learning; Artificial Intelligence. 

I. INTRODUCTION  

Geomagnetic storms, also known as space weather 
events, are large-scale disturbances in the Earth's 
magnetosphere caused by solar activity.[1] They originate 
from the Sun's dynamic and volatile environment, where 
solar flares, coronal mass ejections (CMEs), and high-speed 
solar wind streams interact with the Earth's magnetic field. 
These solar phenomena release vast amounts of energy and 
charged particles into space. When these particles collide 
with the Earth's magnetosphere, they induce currents and 
fields that can cause significant geomagnetic disturbances.[2] 

The process begins with solar flares, which are sudden 
and intense bursts of radiation caused by the release of 
magnetic energy stored in the Sun's atmosphere.[3] These 
flares emit X-rays and ultraviolet radiation, which reach 
Earth within minutes, causing immediate but short-lived 
effects on the ionosphere. More impactful, however, are 
CMEs, which involve the ejection of billions of tons of 
plasma and magnetic field from the Sun's corona into space. 
[4] When these CMEs are directed towards Earth, they can 
take one to three days to arrive, carrying with them a powerful 
magnetic field. As this magnetic field interacts with Earth's 

own magnetic field, it can cause significant disruptions, 
leading to geomagnetic storms.[5] 

One of the most notable historical examples of a 
geomagnetic storm is the Carrington Event of 1859, which 
remains the most powerful geomagnetic storm on record.[6] 
Named after the British astronomer Richard Carrington, who 
first observed the solar flare that triggered the event, the 
Carrington Event provides a dramatic illustration of the 
potential impact of geomagnetic storms. On September 1, 
1859, Carrington observed a massive solar flare, followed by 
the arrival of a CME just 17 hours later. The geomagnetic 
storm that ensued was so intense that auroras were visible as 
far south as the Caribbean, and telegraph systems across 
North America and Europe failed, with some even catching 
fire due to induced currents. The event highlighted the 
vulnerability of electrical systems to space weather 
phenomena, even in the relatively nascent technological 
landscape of the 19th century.[7] 

In today's highly interconnected and technologically 
dependent world, geomagnetic storms pose an even greater 
threat. Modern society relies heavily on a vast array of 
technologies that are susceptible to the effects of space 
weather. Satellites, which are critical for communication, 
navigation, and weather forecasting, can be damaged or 
rendered inoperative by the intense radiation and energetic 
particles associated with geomagnetic storms. Power grids 
are particularly vulnerable, as induced currents can overload 
transformers and other components, potentially leading to 
widespread blackouts.[8] High-frequency radio 
communications, used by aviation and maritime industries, 
can be disrupted, affecting navigation and safety. 
Additionally, geomagnetic storms can increase the drag on 
low-Earth orbit satellites, altering their trajectories and 
shortening their operational lifespans.Given these substantial 
risks, the ability to accurately predict and forecast 
geomagnetic storms is of paramount importance.[9] 
Traditional methods of forecasting rely on observational data 
from satellites and ground-based instruments, combined with 
empirical models to predict the arrival and impact of solar 
events. However, these methods have limitations in terms of 
accuracy and lead time. This is where artificial intelligence 
(AI) can play a transformative role. 
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AI techniques, particularly machine learning and deep 
learning, offer significant potential for improving the 
prediction of geomagnetic storms. By analyzing vast amounts 
of historical and real-time data, AI models can identify 
complex patterns and relationships that may not be apparent 
through traditional analysis. Machine learning algorithms, 
such as linear regression and support vector machines, can be 
used to predict the occurrence and intensity of geomagnetic 
storms based on solar wind parameters and other space 
weather data. More advanced techniques, like Long Short-
Term Memory (LSTM) networks, are particularly well-suited 
for this task due to their ability to capture temporal 
dependencies and long-range correlations in sequential 
data.[10] 

The use of AI in space weather forecasting has shown 
promising results. For instance, LSTM networks have been 
successfully applied to predict geomagnetic indices like the 
Kp index, which quantifies geomagnetic activity. These 
models have demonstrated the ability to provide more 
accurate and timely predictions compared to traditional 
methods, potentially giving operators of critical infrastructure 
more time to implement protective measures.[11] 

Geomagnetic storms originate from dynamic solar 
activity and can have profound effects on modern technology. 
Historical events like the Carrington Event illustrate the 
potential severity of these storms. In today's technology-
dependent world, accurate forecasting of geomagnetic storms 
is crucial, and AI techniques offer a powerful tool to enhance 
our predictive capabilities. By leveraging the strengths of AI, 
we can better prepare for and mitigate the impacts of 
geomagnetic storms, safeguarding our technological 
infrastructure and societal functions. 

II. RELATED WORKS 

This study [9] focuses on improving the evaluation of 

Deep Learning models for forecasting geomagnetic storms. 

While these models show promising results, traditional 

regression metrics like RMSE and R² don't adequately 

capture performance during high activity periods. To address 

this, the study introduces the Binned Forecasting Error, a 

metric tailored to assess model performance across different 

storm intensities. By standardizing datasets used for model 

training and testing, incorporating newer storm data, and 

considering various storm types, the study ensures fair model 

comparison. A comparative analysis between a neural 

network and a persistence model demonstrates the 

effectiveness of the new metric in evaluating forecasting 

performance, particularly during intense geomagnetic storms. 

Additionally, preliminary measurements from ACE are 

proposed to evaluate model performance in real-time 

settings, enhancing operational applicability. 

 

This study [12] focuses on improving the accuracy 

of ionospheric Total Electron Content (TEC) modeling and 

forecasting, crucial for enhancing satellite navigation 

positioning accuracy. A NeuralProphet neural network model 

(NP) is developed, incorporating factors such as solar 

radiation flux index, geomagnetic activity index, geographic 

coordinates, and Global Ionospheric Map (GIM) data from 

the Chinese Academy of Sciences (CAS). The NP model is 

applied for short-term forecasting of ionospheric TEC over 

China during a severe magnetic storm in March 2015, and its 

performance is compared with a Long Short-Term Memory 

Neural Network (LSTM) model. Results show that the NP 

model outperforms the LSTM model, with lower root mean 

square error (RMSE) and relative deviation (RD) during the 

geomagnetic storm period. Additionally, the NP model 

demonstrates better accuracy across different latitudinal 

zones, indicating its effectiveness in characterizing spatial-

temporal characteristics accurately under disturbed 

conditions over China. 

 

This study [13] addresses a significant inconsistency 

in the treatment of the main phase (MP) of geomagnetic 

storms, particularly in the early decreasing part from the 

positive main phase onset (MPO) to the 0-level of Dst and 

SymH indices. By correcting this inconsistency in 848 storms 

with positive MPO out of 1164 storms during 1981–2019, the 

study raises the 0-level of SymH to the MPO-level. This 

correction, which considers the full range of the main phase, 

leads to increases in the corrected storm intensity 

(SymHMin*) and impulsive strength (IpsSymH*) by up to -

149 nT and -134 nT, respectively. These corrections have 

significant implications for global space weather, affecting 

storm identification, classification, and the ability to 

distinguish severe space weather (SvSW) events from normal 

space weather (NSW) events. Additionally, the corrected 

IpsSymH* effectively identifies minor-system-damage space 

weather (MSW) events from NSW events. 

 

This [14] study explores the prediction of 

geomagnetic disturbances using machine learning 

techniques, focusing on the Long-Short Term Memory 

(LSTM) recurrent neural network. Utilizing in-situ 

measurements of solar wind plasma and magnetic field data 

collected over multiple solar cycles from 2005 to 2019 at the 

Lagrangian point L1, the study employs binary classification 

to forecast a decrease in the SYM-H geomagnetic activity 

index below the threshold of -50 nT, indicative of 

magnetospheric perturbations, one hour in advance. 

Addressing the strong class imbalance issue, the study 

utilizes an appropriate loss function tailored to optimize skill 

scores during training. Additionally, value-weighted skill 

scores are employed to evaluate predictions, considering the 

strong temporal variability of the problem. For the first time, 

the study incorporates the content of magnetic helicity and 

energy carried by solar transients as input features in the 

neural network architecture, demonstrating their predictive 

capabilities through correlation-driven feature selection. The 

study showcases the optimal performance of the LSTM 

neural network in accurately forecasting the onset of 

geomagnetic storms, a critical aspect for providing real-time 

warnings in operational settings. 

 

This paper [15] provides a comprehensive review of 

the authors' research spanning the past decade concerning the 

identification and forecasting of severe space weather 

(SvSW). SvSW events are distinguished by their capacity to 

cause significant damage to ground installations, such as 

transformers and telecommunication networks, while normal 

space weather (NSW) does not result in such severe effects. 

The study highlights that very energetic coronal mass 

ejections (CMEs), particularly characterized by sharp 

changes at their leading edge or front, are the primary cause 
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of SvSW events. The research identifies specific parameters, 

including the interplanetary CME (ICME) front's velocity 

jump and the magnitude of the southward interplanetary 

magnetic field (IMF Bz) at and beyond this velocity jump, as 

crucial factors in causing SvSW. Additionally, the study 

introduces the impulsive strength (IpsDst) parameter, derived 

from the average value of Dst during the storm main phase 

(MP), as a means to distinguish between SvSW and NSW. 

Furthermore, it proposes a novel forecasting approach based 

on the product of the observed velocity jump and associated 

IMF Bz southward (ΔVBz), enabling the prediction of SvSW 

events with an advance warning time of approximately half 

an hour, provided estimates of ΔVBz at the Sun-Earth L1 

point are available, possibly derived from observations such 

as those from the Advanced Composition Explorer (ACE) 

satellite. 

 

This study [16] explores the challenging task of forecasting 

geomagnetic activity, which exhibits nonlinear variability 

characterized by heavy-tailed probability distributions and 

intermittent outliers. Given the potential threats posed by 

geomagnetic storms to satellites and power grids, there is 

significant interest in predicting outlier events. The proposed 

model combines neural networks and regressions trained over 

moving windows of observations to adapt to new data. 

Logistic regression is employed to predict periods of high 

activity, utilizing the cumulative distribution function as a 

causal input in time series and machine learning models. 

Using the Aa index dataset, corrected for secular drift, 

forecasting experiments are conducted over horizons ranging 

from 1 to 4 days. Comparative analyses with other models, 

including time-varying parameter regressions and a recurrent 

neural network with fixed weights, demonstrate that the 

model combining neural net and logistic regression achieves 

the most accurate forecasts, followed closely by regression 

alone. The study highlights the trade-off between prediction 

accuracy and the ability to forecast outliers, influenced by the 

width of the moving window. Wider windows yield lower 

overall errors but miss outliers, while narrower windows 

better predict outliers but may call them at incorrect times, 

resulting in higher average errors. Additionally, while the 

model achieves greater accuracy at shorter horizons, its 

performance deteriorates rapidly over longer forecasting 

horizons. 

III. DATASET 

The dataset used in this research is derived from the 

OMNI (Operational Magnetic and Ionospheric Data) dataset, 

which is provided by NASA.[17] This dataset compiles a 

wide range of solar wind, magnetic field, and other space 

weather parameters, which are essential for understanding 

and forecasting geomagnetic storms. The OMNI dataset is 

particularly valuable due to its comprehensive nature and its 

historical depth, providing continuous data from multiple 

sources, including satellites and ground-based observations. 

 

3.1. Data Preprocessing 

Before delving into the specifics of the dataset, it's 

important to understand the preprocessing steps that were 

applied to ensure the data's suitability for analysis: 

 

 

 

3.1.1. Reading and Cleaning the Data: 

The dataset was loaded from a CSV file, which 

included an initial column named Unnamed: 0 that was 

dropped as it was unnecessary for analysis. 

Columns representing Year, Day, and Hour were combined 

to create a single date column, enabling time-series analysis. 

 

3.1.2. Handling Missing Values: 

Any rows with missing values were removed to 

ensure the integrity of the dataset and to facilitate accurate 

modeling. 

 

3.1.3. Sorting and Resetting Index: 

The dataset was sorted by the date column, and the 

index was reset to maintain a clean and sequential ordering 

of data points.  

 

The final dataset after preprocessing consists of 50 

features, which can be grouped into several categories: 

 

Time-related Columns: 

- date: A datetime column representing the exact 

timestamp for each recorded observation. 

- Solar Wind and Magnetic Field Parameters 

- Field Magnitude Avg: The average magnitude of the 

interplanetary magnetic field (IMF). 

- Magnitude of Average Field vector: The average 

magnitude of the IMF vector. 

- Lat. Angle of avg. Field vector: The latitude angle 

of the average IMF vector. 

- Long. Angle of avg. Field vector: The longitude 

angle of the average IMF vector. 

- Bx,GSE, By,GSE, Bz,GSE: Components of the IMF 

in the Geocentric Solar Ecliptic (GSE) coordinate 

system. 

- By,GSM, Bz,GSM: Components of the IMF in the 

Geocentric Solar Magnetospheric (GSM) 

coordinate system. 

Solar Wind Plasma Parameters: 

- Proton temperature: The temperature of protons in 

the solar wind. 

- Proton density: The density of protons in the solar 

wind. 

- Bulk speed: The speed of the solar wind. 

- Bulk flow longitude, Bulk flow latitude: The 

direction of the solar wind flow. 

- Na/Np: The ratio of alpha particles to protons. 

- Flow Pressure: The dynamic pressure of the solar 

wind. 

 

Standard Deviation Measures: 

- Sigma-|B|, Sigma-B, Sigma-Bx, Sigma-By, Sigma-

Bz: Standard deviations of the magnetic field 

components and magnitude. 

- Sigma-T, Sigma-n, Sigma-V, Sigma-phi-V, Sigma-

theta-V: Standard deviations of temperature, 

density, velocity, and flow angles. 

Energetic Particle Fluxes: 

- PROT Flux >1 MeV, PROT Flux >2 MeV, PROT 

Flux >4 MeV, PROT Flux >10 MeV, PROT Flux 
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>30 MeV, PROT Flux >60 MeV: Fluxes of protons 

at different energy levels. 

Geomagnetic Indices and Other Parameters: 

-  Kp*10: A measure of geomagnetic activity, 

multiplied by 10 to transform it into a more 

manageable range. 

- R: The sunspot number, indicating solar activity. 

- DST Index: The disturbance storm time index, 

representing the strength of the ring current around 

Earth. 

- AE-index: The auroral electrojet index, indicating 

auroral activity. 

- M'SPH Flux Flag: A flag indicating the flux of 

energetic particles in the magnetosphere. 

- Ap-index: A daily index of geomagnetic activity. 

- f10.7_index: The solar radio flux at 10.7 cm 

wavelength, an indicator of solar activity. 

- PC(N): The polar cap index, indicating geomagnetic 

activity in the polar regions. 

- AL-index, AU-index: Indices representing the 

auroral lower and upper activity levels. 

- MAC: A miscellaneous column related to magnetic 

activity. 

 

3.1.4. Data Scaling and Splitting: 

To prepare the data for machine learning models, the 

following steps were taken: 

 

Scaling: 

The features were scaled using the MinMaxScaler to 

normalize the values between 0 and 1, ensuring that all 

features contribute equally to the model. 

Splitting: 

 

The dataset was split into training and test sets in an 

80-20 ratio. This chronological split ensured that the model 

was trained on past data and tested on future data, simulating 

a real-world forecasting scenario. 

Reshaping for LSTM: 

 

For the LSTM model, the input data was reshaped 

into a three-dimensional array with the structure [samples, 

timesteps, features]. 

Target Variable: 

- Kp*10: This is the target variable for prediction, 

representing the geomagnetic activity index scaled 

by a factor of 10. It provides a quantifiable measure 

of the intensity of geomagnetic storms. 

This extensive dataset, with its diverse range of solar and 

geomagnetic parameters, provides a robust foundation for 

developing and testing AI models aimed at forecasting 

geomagnetic storms. By leveraging these comprehensive 

features, the models can learn to predict geomagnetic activity 

with high accuracy, thereby contributing to better 

preparedness and mitigation strategies for space weather 

impacts. 

IV. METHODOLOGY 

This section outlines the methodology employed in 

this research, detailing the development, training, and 

evaluation of the AI models used for forecasting geomagnetic 

storms. The focus is on the selection of models, the principles 

behind them, training procedures, and the evaluation metrics 

used to measure their performance. 

 

4.1. Model Selection 

Two primary models were selected for this research: 

Linear Regression and Long Short-Term Memory (LSTM) 

networks. These models were chosen to explore both 

traditional and advanced AI techniques for forecasting 

geomagnetic storms. 

 

4.1.1. Linear Regression 

Linear Regression is a fundamental statistical 

method that assumes a linear relationship between the 

independent variables (features) and the dependent variable 

(target). The primary objective of Linear Regression is to 

model the relationship between the features and the target by 

fitting a linear equation to observed data. The Linear 

Regression model can be mathematically represented as 

follows: 

 

𝑦̂ = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯+ 𝛽𝑛𝑥𝑛 
                                                                                         (1) 

Where: 

- 𝑦̂  is the predicted value. 

- 𝛽0 is the intercept of the regression line. 

- 𝛽1, 𝛽2, …… , 𝛽𝑛 are the coefficients for the 

independent variables 𝑥1, 𝑥2, … . . , 𝑥𝑛. 

The model parameters 𝛽1, 𝛽2, …… , 𝛽𝑛 are estimated 

using the least squares method, which minimizes the sum of 

the squared differences between the observed values and the 

predicted values. 

 

4.1.2. Long Short-Term Memory (LSTM) Networks: 

LSTM networks are a type of Recurrent Neural 

Network (RNN) designed to capture long-term dependencies 

in sequential data. They are particularly suited for time-series 

forecasting due to their ability to retain information over long 

periods. The core component of an LSTM network is the 

LSTM cell, which consists of three main gates: the forget 

gate, the input gate, and the output gate. These gates control 

the flow of information and help the network manage its 

memory. 

 

The key equations for an LSTM cell are as follows: 

The forget gate is responsible for deciding which information 

from the previous cell state should be discarded. It takes the 

previous hidden state (ℎ𝑡−1) and the current input (𝑥𝑡), 

combining them and passing the result through a sigmoid 

activation function. The sigmoid function outputs values 

between 0 and 1, where a value closer to 0 means "completely 

forget" and a value closer to 1 means "completely retain." 

This mechanism helps the network decide the proportion of 

the previous cell state to be kept in the current state.  

 

                𝑓𝑡 = 𝜎(𝑊𝑓 × [ℎ𝑡−1, 𝑥𝑡] + 𝐵𝑓)                       (2) 

 

The input gate controls how much new information is added 

to the cell state. It operates in two stages. First, it creates a 

candidate cell state (𝑐̃𝑡 ) by applying a tanh activation 

function to the combined previous hidden state and current 

input. This candidate represents new information that could 
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potentially be added to the cell state. Second, the input gate 

uses a sigmoid activation function to decide which parts of 

this candidate cell state should be updated. The combination 

of these outputs determines the new cell state. 

 

              𝑖𝑡 = 𝜎(𝑊𝑖 × [ℎ𝑡−1, 𝑥𝑡] + 𝐵𝑖)                             (3) 

   

        𝑐̃𝑡 = 𝑡𝑎𝑛ℎ⁡(𝑊𝑐 × [ℎ𝑡−1, 𝑥𝑡] + 𝐵𝑐)                           (4) 

 

The output gate decides the output of the LSTM cell, which 

also influences the hidden state. This gate takes the previous 

hidden state and the current input, passes them through a 

sigmoid activation function to determine the relevant parts of 

the cell state that should be output. This result is then 

multiplied by the tanh of the current cell state to produce the 

new hidden state, effectively determining what information 

should be carried forward to the next time step. 

 

            𝑂𝑡 = 𝜎(𝑊𝑜 × [ℎ𝑡−1, 𝑥𝑡] + 𝐵𝑜)                         (5) 

 

                𝑐𝑡 = 𝑓𝑡 × 𝑐𝑡−1 + 𝑖𝑡 ∘ 𝑐̃𝑡                                (6) 

 

                  ℎ𝑡 = 𝑜𝑡 × 𝑡𝑎𝑛ℎ⁡(𝑐𝑡)                                  (7) 

 

LSTMs are effective in learning from the sequential 

patterns in the data, which makes them suitable for time-

series forecasting tasks such as predicting geomagnetic 

activity. 

 

 

4.2. Model Training 

4.2.1. Linear Regression 

The Linear Regression model was trained using 

scaled training data. The goal during training was to find the 

optimal values for the model parameters 𝛽1, 𝛽2, …… , 𝛽𝑛 

by minimizing the mean squared error (MSE) between the 

predicted and actual values of the target variable KP*10, 

The model fitting process involves solving the normal 

equations or using gradient descent algorithms to iteratively 

update the model parameters until the error is minimized. 

 

4.2.2. Long Short-Term Memory (LSTM) Networks 

The LSTM model was constructed with an input 

layer, one LSTM layer containing 50 units, and a dense 

output layer. The LSTM layer captures the temporal 

dependencies in the data, while the dense layer maps the 

LSTM outputs to the prediction of KP*10. 

The model was compiled with Mean Absolute Error (MAE) 

as the loss function and the Adam optimizer. MAE was 

chosen for its robustness to outliers, and the Adam optimizer 

was selected for its efficiency and ability to handle large 

datasets. The training process involved feeding the scaled and 

reshaped training data into the model in mini-batches and 

adjusting the weights through backpropagation through time 

(BPTT). 

 

To prevent overfitting, early stopping was 

implemented during training. This technique monitors the 

validation loss and stops the training process when the 

validation loss ceases to improve, ensuring that the model 

generalizes well to unseen data. 

 

4.3. Evaluation Metrics 

The performance of both models was assessed using two 

primary metrics: Root Mean Squared Error (RMSE) and R² 

score. These metrics provide a comprehensive evaluation of 

the models' predictive capabilities. 

 

4.3.1. Root Mean Squared Error (RMSE): 

RMSE is defined as the square root of the average squared 

differences between the predicted and actual values. It 

provides a measure of the model's prediction accuracy, with 

lower values indicating better performance. The formula for 

RMSE is: 

 

                      𝑅𝑀𝑆𝐸 = √
1

𝑛
Σ𝑖=1
𝑛 (

𝑑𝑖−𝑓𝑖

σ𝑖
)
2

                      (8) 

 

 

where n is the number of data points. 

 

4.3.2. R² Score (Coefficient of Determination): 

The R² score represents the proportion of the variance in the 

target variable that is predictable from the input features. It 

ranges from 0 to 1, with higher values indicating better model 

performance. The formula for R² score is: 

 

                      𝑆𝑆𝑟𝑒𝑠 = ∑ (𝑦̂𝑖 − 𝑓𝑖)
2

𝑖 = ∑ 𝑒𝑖
2

𝑖 ⁡                     (9) 

 

                              𝑆𝑆𝑡𝑜𝑡𝑎𝑙 = ∑ (𝑦̂𝑖 − 𝑦̅̂)2𝑖 ⁡                        (10) 

 

                                     𝑦̂ =
1

𝑛
∑ 𝑦̂𝑖
𝑛
𝑖=1 ,                               (11) 

 

                                   𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
                             (12) 

 

The RMSE metric provides insight into the average 

prediction error, while the R² score indicates the proportion 

of variability explained by the model. Together, these metrics 

offer a comprehensive view of the model's performance. 

 

4.4. Results Visualization 

To provide a comprehensive evaluation of the 

models' performances, actual vs. predicted values were 

plotted for both Linear Regression and LSTM models. These 

visualizations help in understanding how closely the models' 

predictions match the actual geomagnetic activity over time. 

 

In conclusion, the methodology section details the careful 

selection and training of both a traditional Linear Regression 

model and an advanced LSTM network to forecast 

geomagnetic storms. By using robust evaluation metrics and 

visualization techniques, this research ensures a thorough 

assessment of the models' predictive capabilities, 

contributing to the advancement of AI techniques in space 

weather forecasting. 

V. RESULTS 

This section presents the results obtained from the 

Linear Regression and Long Short-Term Memory (LSTM) 

models for forecasting geomagnetic storms. The performance 

of both models was evaluated using the Root Mean Squared 

Error (RMSE) and R² score, and the results were visualized 
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to provide a clear comparison between the predicted and 

actual values. 

 

5.1. Linear Regression Model Results 

5.1.1. Model Performance 

The Linear Regression model was trained on 80% of the 

dataset and tested on the remaining 20%. The performance of 

the model was measured using RMSE and R² score on the test 

data. 

 

- Root Mean Squared Error (RMSE): The RMSE of 

the Linear Regression model on the test set was 

found to be 5.946. This indicates that, on average, 

the model's predictions deviate from the actual 

values by approximately 5.946 units of the Kp*10 

index. 

 

- R² Score: The R² score for the Linear Regression 

model was 0.771. This means that the model 

explains 77.1% of the variance in the Kp*10 index, 

suggesting a relatively good fit considering the 

simplicity of the model. 

 

5.1.2. Visualizing Predictions 

The actual vs. predicted values for the Linear Regression 

model are plotted to visualize the model's performance. The 

plot reveals how closely the predicted values track the actual 

geomagnetic activity over the test period. While there is a 

general alignment between the two, some deviations indicate 

areas where the model could improve. 

 

 
 

Figure 1: Actual vs Predicted linear regression Results. 

 

5.1.3. Analysis 

The Linear Regression model provides a 

straightforward baseline for forecasting geomagnetic storms. 

Although it performs reasonably well with an R² score of 

0.771, the RMSE value suggests that the predictions could be 

refined further. The linear nature of this model limits its 

ability to capture complex patterns and dependencies in the 

data, highlighting the need for more sophisticated models. 

 

5.2. Long Short-Term Memory (LSTM) Model Results 

Model Performance 

The LSTM model was also trained on 80% of the dataset 

and evaluated on the remaining 20%. The performance 

metrics for the LSTM model are significantly better than 

those for the Linear Regression model. 

 

- Root Mean Squared Error (RMSE): The RMSE of 

the LSTM model on the test set was 1.461. This 

lower RMSE value indicates that the LSTM model's 

predictions are much closer to the actual values 

compared to the Linear Regression model. 

 

- R² Score: The R² score for the LSTM model was 

0.986. This high R² value indicates that the LSTM 

model explains 98.6% of the variance in the Kp*10 

index, demonstrating its superior ability to capture 

the underlying patterns in the data. 

 

5.2.1. Visualizing Predictions 

The actual vs. predicted values for the LSTM model were 

plotted to provide a visual comparison. The plot shows that 

the LSTM model's predictions closely follow the actual 

geomagnetic activity, with minimal deviations. This visual 

confirmation underscores the effectiveness of the LSTM 

model in forecasting geomagnetic storms. 

 

 
 

Figure 2: Actual vs Predicted LSTM Results. 

5.2.2. Analysis 

The LSTM model significantly outperforms the 

Linear Regression model, as evidenced by its lower RMSE 

and higher R² score. The ability of LSTM networks to capture 

long-term dependencies and sequential patterns in the data is 

evident from these results. The LSTM model's performance 

indicates that it can effectively learn and predict the complex 

temporal dynamics associated with geomagnetic activity. 

 

5.3. Comparative Analysis 

A comparative analysis of the two models highlights 

the advantages of using advanced AI techniques like LSTM 

networks for time-series forecasting. While the Linear 

Regression model provides a good starting point, its linear 

assumptions limit its predictive accuracy. In contrast, the 

LSTM model's capacity to learn from sequential data and 

capture intricate patterns makes it a superior choice for this 

task. 

RMSE Comparison: The RMSE for the Linear 

Regression model (5.946) is significantly higher than that for 

the LSTM model (1.461), indicating that the LSTM model's 

predictions are much closer to the actual values. 

 

R² Score Comparison: The R² score for the Linear 

Regression model (0.771) is lower than that for the LSTM 



International Integrated Intelligent Systems (IIIS), Volume 1 , Issue 2 

 

model (0.986), suggesting that the LSTM model accounts for 

a much larger proportion of the variance in the target variable. 
 

VI. CONCLUSION 

This research underscores the significance of leveraging 

advanced AI techniques, particularly LSTM networks, for 

forecasting geomagnetic storms, as demonstrated through 

comparative analysis with a traditional Linear Regression 

model. While Linear Regression provided a foundational 

understanding, the LSTM network's superior performance, 

with significantly lower RMSE and higher R² score, 

highlights its efficacy in capturing complex temporal 

dynamics inherent in space weather data. These findings 

underscore the critical role of AI in enhancing the accuracy 

of geomagnetic storm forecasts, crucial for safeguarding 

modern technology and infrastructure. Moving forward, 

further advancements in model architectures, feature 

engineering, and real-time forecasting capabilities promise to 

enhance the practical applicability and reliability of AI-

driven space weather prediction systems, ultimately 

mitigating the adverse impacts of geomagnetic storms on 

society and industry. 
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