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          Abstract—Brain tumor classification from MRI scans is 

an essential task in medical diagnostics, enhancing the precision 

and speed of treatment planning. This project introduces a deep 

learning model that automates the classification of brain tumors 

by leveraging a pre-trained convolutional neural network 

(CNN). The model processes MRI images and categorizes them 

into one of four possible classes: glioma, meningioma, pituitary 

tumor, or no tumor. By utilizing the EffnetB0 pretrained model, 

our approach benefits from learned features on a broad range 

of visual data, allowing for robust feature extraction even with 

a limited number of medical images. The dataset consists of MRI 

scans, each labeled according to the tumor type, facilitating 

supervised learning. The effectiveness of the model is assessed 

based on accuracy, precision, and recall metrics, aiming to 

support radiologists by providing a reliable preliminary 

diagnostic tool that improves the diagnostic workflow for brain 

tumors. 
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I. INTRODUCTION 

        The classification of brain tumors stands as a cornerstone 

in the realm of neuro-oncology [1], wielding significant 

implications for diagnosis, treatment planning, and 

prognostication. With advancements in imaging modalities, 

molecular profiling, and computational techniques, the 

landscape of brain tumor classification has witnessed a 

paradigm shift, transcending traditional histopathological 

boundaries[2]. In the pursuit of precision medicine, 

elucidating the intricate heterogeneity within brain tumors has 

become imperative, driving the quest for refined classification 

systems that align with their underlying biological 

characteristics[3]. 

         Brain tumors constitute a diverse array of neoplasms 

arising from the intricate milieu of the central nervous system. 

Their clinical manifestations, therapeutic responses, and 

prognostic outcomes are inherently linked to their molecular 

signatures[4], cellular origins, and morphological features. 

Historically, brain tumor classification has primarily relied on 

histopathological criteria, encompassing a spectrum from 

benign to malignant entities. However, this conventional 

taxonomy often falls short in capturing the nuanced 

complexities of tumor behavior and therapeutic 

responsiveness[5]. 

          In recent years, the advent of high-throughput omics 

technologies has revolutionized our understanding of brain 

tumor biology, unraveled intricate molecular subtypes and 

signaled pathways that underpin tumorigenesis and 

progression[6]. Integrating multi-omic data, including 

genomics, transcriptomics, epigenomics, and proteomics, has 

heralded a new era of molecular taxonomy, reshaping our 

conceptualization of brain tumor classification[7]. This 

molecular-driven approach not only refines diagnostic 

precision but also holds promise for personalized therapeutic 

strategies tailored to the unique molecular profiles of 

individual tumors[8]. 

          Moreover, the emergence of artificial intelligence and 

machine learning methodologies has empowered the field 

with robust computational tools for pattern recognition, 

feature extraction, and predictive modeling. Harnessing the 

power of these technologies, researchers have endeavored to 

develop innovative classification frameworks capable of 

discerning subtle distinctions between tumor subtypes, 

thereby facilitating more accurate diagnosis and 

prognostication[9]. 

        Herein lies the promise of AI in healthcare, particularly 

in the realm of brain tumor detection. By leveraging advanced 

algorithms and machine learning techniques, AI systems can 

analyze vast amounts of medical imaging data with 

unprecedented speed and precision. These systems can detect 

subtle abnormalities in brain scans that may elude human 

perception, leading to earlier and more accurate 

diagnoses[10]. 

         Moreover, AI-powered diagnostic tools can aid 

healthcare professionals in decision-making processes by 

providing supplementary information and insights derived 

from comprehensive data analysis. This not only enhances 

diagnostic accuracy but also facilitates personalized treatment 

planning tailored to individual patient needs[11]. 

        This research paper endeavors to elucidate the 

contemporary landscape of brain tumor classification, 

encompassing the evolution from traditional histopathological 

schemes to molecular and computational paradigms. Through 

a comprehensive synthesis of literature, we aim to delineate 

the inherent challenges, current methodologies, and future 

directions in brain tumor classification, with a focus on 

advancing precision oncology paradigms for improved patient 

care and outcomes. 
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II. RELATED WORK 

          Recent advancements in artificial intelligence (AI) 

have significantly impacted the healthcare industry, 

especially in the field of brain tumor classification using deep 

learning models. This section discusses notable studies and 

compares their methodologies and outcomes with the 

findings of our study on brain tumor classification using 

pretrained EfficientNet models. 

 

A.  Transfer Learning Models 

      Khaliki and Başarslan (2024) [12] utilized various CNN-

based transfer learning models like EfficientNetB4, VGG19, 

and Inception-V3 for classifying brain tumors from MRI 

images. They reported high accuracy levels, demonstrating 

the effectiveness of transfer learning in enhancing diagnostic 

processes in healthcare. 

      Deepa AB and Dr. Vargheese Paul (2024) [13] 

highlighted the utility of transfer learning in overcoming the 

challenges of sparse datasets in brain tumor classification.     

  They proposed a selectively fine-tuned model, integrating 

max pooling and dense layers into pre-trained architectures, 

achieving accuracy levels above 90%. This approach 

effectively mitigates the risk of overfitting, a common issue 

in medical image analysis due to the high dimensionality and 

variability of medical images 

 

B.  Comparative Studies and Comprehensive Models 

       These studies have explored the potential of CNNs and 

transfer learning in brain tumor classification. For instance, 

researchers have compared the performance of different 

pretrained models such as VGG16, ResNet-50, and 

InceptionV3, with findings suggesting that these models 

provide a robust framework for early diagnosis and rapid 

treatment of brain tumors. 

 

C.  Challenges and Future Directions 

         While transfer learning offers a robust approach for 

leveraging pretrained models on large datasets like 

ImageNet, challenges remain in terms of model selection and 

adaptation to specific medical imaging tasks. Future research 

could explore the integration of more diverse data sources 

and advanced model training techniques to further enhance 

the performance and reliability of these systems. 

 

D.  Our Study's Contribution 

          Our research contributes to this growing body of 

knowledge by transfer EfficientNet, a pretrained model, 

specifically for brain tumor classification. We demonstrated 

that layers of a pretrained model could significantly enhance 

classification accuracy when tested on distinct brain tumor 

types. 

       The integration of AI and deep learning in medical 

imaging, particularly using CNNs and transfer learning 

models, continues to show promising results in improving the 

accuracy and efficiency of diagnosing critical conditions such 

as brain tumors. Our study aligns with the current trends and 

advances the field by fine-tuning EfficientNet models to meet 

the specific needs of medical imaging diagnostics[14]. 

III.  MATERIALS 

       The dataset [15] is an open-source brain tumor dataset 

that merges data from three sources:  

 
Fig.1. Sample of Dataset. 

 

Figshare , SARTAJ , and Br35H , resulting in a total of 7023  

brain MRIs. This dataset represents four categories: healthy 

brain images, meningioma, pituitary, and glioma tumors. 

Concretely, there are 2000 images of healthy individuals, 

1621 glioma images, 1645 meningioma images, and 1757 of 

pituitary tumors. Figure 1 shows example MR images from 

the dataset 

  We divided the datasets into train, validation, and test. 

First, we split the datasets into 80% train and 20% test. 

Then, we split 10% of the training datasets into validation.  
 

 

 
 

Fig.2.  Distribution of Training and Test images by Label. 

 

IV. METHODS 

        A comprehensive explanation of each specific step 

within the suggested methodology is presented in the 

subsequent sections. 
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A.  Pre-processing 

         To begin, the input images are down sampled to 

150 × 150 × 3 so that the resulting tensor can be properly 

processed by the pre-trained EfficientNet model. By 

maintaining image content and features during scaling, 

computational effort is reduced during network training. 

And then Converting categorical labels to indices. This is 

achieved by finding the index of each label in a predefined 

list (labels). This step converts textual or categorical labels 

into numeric form, which is easier to handle computationally. 

      After converting the labels to numeric indices, the indices 

are transformed into a binary matrix format known as one-hot 

encoding. This is essential for categorical data in 

classification tasks where the algorithm (like many neural 

network architectures) benefits from receiving the labels as 

vectors with a binary class matrix.  

  This format explicitly defines which class each sample 

belongs to without implying any ordinal relationship between 

the classes. 

       These steps are crucial for preparing the dataset for 

effective training and evaluation of a neural network model, 

ensuring that the input data meets the expected format and 

structure required by TensorFlow and Keras frameworks. 

B.  Deep learning 

        Deep learning is a subset of machine learning that 

focuses on training artificial neural networks to perform 

complex tasks by learning patterns and representations 

directly from data. Unlike traditional machine learning 

approaches that require manual feature engineering, deep 

learning algorithms autonomously extract hierarchical 

features from data, leading to the creation of powerful and 

highly accurate models. In this study, CNN architecture is 

employed. Convolution neural network Convolutional neural 

networks represent a breakthrough in deep learning and 

computer vision. These architectures are specifically 

designed to extract meaningful features from complex visual 

data, such as images and video. The inherent structure of the 

CNN, consisting of convolutional layers, pooling layers, and 

fully connected layers, mimics the ability of the human  

visual system to recognize patterns and hierarchical 

features[16].  

         Convolutional layers use convolutional operations to 

detect local features, which are then progressively abstracted 

by pooling layers that condense the information. The 

resulting hierarchical representations are then fed into fully 

connected layers for classification or regression tasks. CNN 

have redefined the landscape of image recognition, achieving 

remarkable success in diverse domains ranging from image 

classification and object detection to face recognition and 

medical image analysis.[17] 

 

C. Transfer learning 

         Transfer learning offers a solution to the challenge of 

limited data availability, particularly in specialized fields like 

medical imaging, such as brain tumor classification from 

MRI scans. Unlike traditional machine learning methods, 

Convolutional Neural Networks (CNNs) automatically 

extract both low-level and high-level features from data, 

making them powerful tools for tasks like image 

classification. However, CNNs often require large datasets to 

train accurately and avoid overfitting. In cases where 

obtaining a substantial annotated dataset is impractical, 

transfer learning comes into play.  

        Transfer learning involves leveraging the knowledge 

gained by training models on extensive benchmark datasets 

like ImageNet and applying it to similar or different tasks, 

such as medical image classification. While directly using 

pre-trained CNN architectures for inference on target datasets 

like MRI scans may not generalize well due to domain 

differences, fine-tuning the pre-trained models' layers can 

align them with the specific characteristics of the target 

images.[18] 

 
Fig.3. Main Benefits of Transfer Learning. 

 

D. EfficientNet 

        EfficientNet is a family of scalable and efficient CNN 

models. The main goal of this series is to achieve better 

performance with fewer parameters. the term " EfficientNet" 

is a combination of the words "efficiency" and "network". 

The model series is mainly used in visual processing tasks 

such as image classification. EfficientNet is a family of 

models that delivers competitive results in both performance 

and computational cost. It offers variations of different size 

and complexity at different scales. Higher numbered models 

are typically larger and more complex but require more 

computing power. It was the top performing model in the 

ImageNet competition. 

        In the presented study, transfer learning is applied using 

pre-trained EfficientNet models, specifically EfficientNetB0 

which are transfer learnt using MRI sequences from the MRI 

brain tumor dataset. Details will be provided in subsequent 

sections on how the classification layer of these pre-trained 

models is transferred, along with experimental configurations 

for training, evaluating the model, and its performance on 

unseen test instances.[19] 

 

 
Fig.4. Configuration of Transfer Learning. 
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E.  Model Configuration 

         The EfficientNet B0 model, pretrained on ImageNet, 

was employed as the foundational architecture. A common 

pattern used to adapt a pre-trained model for a new 

classification task by adding custom layers on top. This is a 

typical approach in transfer learning where the pre-trained 

model acts as a fixed feature extractor and the added layers 

adapt those features to a new task. 

       Custom Layers: Building upon the feature extraction 

capabilities of EfficientNet, we extend the model with a 

sequence of densely connected layers and regularization 

mechanisms to fine-tune the model for our classification task. 

The architecture is as follows: 

         Global Average Pooling 2D Layer: This layer follows 

the EfficientNet and is used to reduce the spatial dimensions 

of the output from the base model to a single 1D vector per 

channel. This reduction helps in minimizing overfitting by 

reducing the number of parameters in the model. 

Dense Layer with 4096 Units (ReLU Activation): The 

first dense layer is designed to interpret the features extracted 

by the EfficientNet, using a high number of neurons (4096) 

to capture complex patterns. 

Dropout Layer (30% Rate): To prevent overfitting, a 

dropout layer is introduced post the first dense layer, 

randomly setting 30% of the input units to zero during 

training. 

Sequential Dense Layers: Following the initial dense 

layer and dropout, the architecture includes two more dense 

layers with 1024 and 512 units respectively, each followed by 

ReLU activation. These layers further refine the feature 

representation for the classification task. 

       Batch Normalization: Between the successive dense 

layers, batch normalization is employed. This layer 

normalizes the activations from the previous layer at each 

batch, maintaining mean output close to 0 and the output 

standard deviation close to 1. This normalization helps in 

accelerating the training process by stabilizing learning. 

       Dropout Layer (50% Rate): Another dropout layer with 

a higher dropout rate of 50% is added after the batch 

normalization to enhance the regularization effect, further 

aiding in mitigating the model's overfitting. 

Output Layer (4 Units, Softmax Activation): The final layer 

of the model is a dense layer with 4 units, corresponding to 

the number of classes in the classification task. It uses a 

softmax activation function to output the probability 

distribution over the four classes. 

        By integrating a robust pre-trained model with custom-

tailored dense layers and regularization techniques, our 

architecture is designed to tackle the image classification task 

efficiently and effectively. This setup not only leverages the 

generalizability of EfficientNet but also adapts to the specific 

nuances of our dataset through the trainable dense layers. 

 

F.  Experimental setup 

      In the beginning of this section, we will outline the 

necessary hardware and software requirements for training 

and evaluating the model. Subsequently, we will delve into 

the analysis of various hyperparameters, making explicit 

adjustments until an optimal combination is found. Finally, 

we will provide a concise explanation of each performance 

metric used during the model evaluation to conclude this 

section. 

G. Approval for participation  

        As the data is open source, there are no experiments on 

humans conducted by the authors. Open source has been 

studied on MRI images. 

 

H. System requirements 

      The experiments were conducted on Google 

Colaboratory, an open-source notebook platform provided by 

Google. This platform offers access to both free and premium 

GPU and TPU resources, which are valuable for academic 

and research purposes. The models were trained using T4 

GPU. The coding was done in Python, and the TensorFlow 

and Keras APIs were used for the backend and frontend of 

the system, respectively. 

 

I. Hyper parameter settings 

        Hyperparameters, which are training parameters, was 

conducted to find the most suitable settings for model 

training. These hyperparameters include batch size, 

optimizers, learning rate, epochs, and loss function. 

Categorical cross-entropy was chosen as the loss function 

since the task involves classifying brain tumors into glioma, 

meningioma, and pituitary tumor categories, constituting a 

multi-class classification challenge. The initial configuration 

for EfficientNet model involved using Adam as the optimizer 

and a learning rate of 0.001 (1e−2). 

       To monitor the model's performance, the validation 

accuracy was observed every 5 iterations, and the initial 

learning rate was reduced by a decay factor of 0.2. A dropout 

rate of 0.2 and 0.5 was employed for further regularization 

during model training, without affecting the ImageNet 

weights. The training of EfficientNetB0 was performed over 

50 epochs. To evaluate the model's performance and detect 

overfitting, 10% of the images from the training dataset were 

set aside as a validation set after each epoch. 

       Since EfficientNet has been trained on ImageNet, which 

has 1000 classes, we will likely need to adjust the top of the 

network for your number of classes: 

Remove the top layer (fully connected layer and SoftMax) of 

the pre-trained model. 

      Add new layers that are appropriate for our task. 

Typically, this includes a GlobalAveragePooling2D layer 

followed by three Dense layers and with the final Dense layer 

having several units equal to the number of target classes, 

activated by a SoftMax function for classification tasks. 

Performance metric evaluation 

V.  PERFORMANCE METRIC EVALUATION 

        Accuracy, precision, recall, sensitivity, specificity, and 

F1-score are among the performance metrics employed to 

assess the overall performance of the proposed model. 

Furthermore, the generation of a confusion matrix highlights 

the class-wise predictions made by the model on unseen test 

examples. Subsequent subsections will delve deeper into 

each evaluation metric, offering more comprehensive 

discussions following a brief description of each.[20] 

 

A. Sensitivity (Se) 

        In the context of medical diagnosis, particularly in tasks 

like brain tumor categorization, the model’s sensitivity and 

recall have a crucial role in determining the presence or 

absence of a brain tumor in a patient. Sensitivity, also known 

as the true positive rate (TPR), is pivotal; it represents the 
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proportion of accurately predicted positive labels that are 

indeed positive. The following formula enables the 

quantification of the model’s sensitivity and recall[21]: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑅𝑒𝑐𝑎𝑙𝑙) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(1) 

 
B. Precision  

       Is a measure of the accuracy of a model's positive 

predictions. It is defined as the ratio of true positives to the 

total number of predicted positives, which includes both true 

positives and false positives. Mathematically, precision is 

expressed as: 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(2) 

 

C. Accuracy (Acc) 

        The accuracy of the model is determined by the ratio of 

correctly predicted labels to the total number of labels. This 

yields a percentage that reflects the expected accuracy of the 

tested model. A formula is available for computing precision, 

which is a key evaluation metric in classification tasks[22]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(3) 

 
D. F1-score 

        The F1-score, commonly referred to as the F-measure, 

serves as the harmonic means between a model’s accuracy 

and recall. This metric offers a comprehensive assessment of 

the model’s overall performance. The F1-score underscores 

the need for a balance between precision and recall. The 

formula for calculating the F1 score is presented below: 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(4) 

 
E. The Area Under the Curve (AUC) 

 
         AUC represents the degree or measure of separability 

achieved by the model. It tells how much the model is capable 

of distinguishing between classes, higher AUC values 

indicate better model performance. 

Interpretation of AUC: 

AUC = 0.5 

• The model has no discrimination capacity to 

distinguish between positive and negative class. 

0.5 < AUC < 1.0 

• The model is better at predicting the positives from 

the negatives. The closer the AUC to 1, the better. 

AUC = 1 

• The model perfectly discriminates between all 

positive and all negative instances. 

 

 

F. Confusion matrix 

         A confusion matrix, sometimes referred to as an error 

matrix, is a structured table used to display data about actual 

labels (ground truth) and predicted class assignments. 

      It not only provides an overall summary of the model's 

performance but also offers a more detailed insight into how 

well the model generalizes across individual classes. The 

layout of the confusion matrix typically positions the ground 

truth along the y-axis, while the predicted class labels are 

represented along the x-axis. 

VI. RESULTS 

      The transfer learning of the pre-trained EfficientNetB0 

model on our dataset, consisting of four distinct classes of 

medical images, has shown significant improvement in 

classification accuracy, the pre-trained EfficientNetB0, with 

its top layers reconfigured and lower layers frozen, achieved 

a baseline accuracy of 96.44% on the validation set.  

      This phase involved training only the newly added top 

layers to prevent catastrophic forgetting of useful features 

learned from the ImageNet dataset. figure below shows the 

training and validation accuracy of our presented model 

 

      The transfer learning process not only improved accuracy 

but also enhanced the model’s ability to generalize, as 

evidenced by the performance on the unseen test set, where 

the model achieved an accuracy of 97.08%. 

 
Fig.5. Performance of our Model. 

      Further analysis through the confusion matrix revealed 

high precision and recall rates across all classes, with 

particularly strong performance in distinguishing between 

glioma and meningioma tumors, which are often challenging 

to classify.  

       The precision scores were as follows: glioma (96%), 

meningioma (93%), no tumor (100%), and pituitary (99%). 

Recall scores were equally robust: glioma (94%), 

meningioma (96%), no tumor (99%), and pituitary (99%).  

F1 score: glioma(0.95), meningioma (94%), no tumor (99%), 

and pituitary (99%). 

The AUC: (0.96501815) 

       The following figure illustrates the classification report 

metrics per class, highlighting the balanced performance 

across the board: 

TABLE 1.  CLASSIFICATION REPORT. 
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Fig.6. Confusion Matrix of Our Model. 

 
Fig.7. Classification Report Metrics Per Class. 

      These results underscore the efficacy of leveraging 

transfer learning via fine-tuning pre-trained models, 

particularly EfficientNet, for specialized tasks in medical 

image analysis, reducing the need for extensive labeled 

datasets and computational resources. 

VII. CONCLUSION 

          This study utilizes transfer learning with pre-trained 

EfficientNet (EfficientNetB0) to perform multi-class 

classification of brain tumors using MR images of four tumor 

types: glioma, meningioma, no tumor, and pituitary tumor. 

The pre-trained ImageNet weights are loaded into the 

foundational model, and the architecture of EfficientNet B0 

is adjusted by adding several top layers, including a 

convolutional base, dropout layers, batch normalization, and 

fully connected layers.  

          For the multi-class classification of brain tumor types, 

classifier is constructed on top of the pre-trained EfficientNet 

convolutional base. The model is trained using combination 

of  MRI  brain tumor dataset, with fine-tuning of the 

hyperparameters for EfficientNet B0. The proposed fine-

tuned EfficientNet is tested in multiple trials to evaluate its 

performance and achieves impressive overall test accuracy of 

97.08%. 

VIII.  FUTURE WORK 

          Moving forward, future research should focus on 

addressing several key challenges, including the need for 

larger datasets to train and validate deep learning models, 

standardization of imaging protocols and feature extraction 

methods, and integration of multi-modal imaging techniques 

for comprehensive tumor characterization. Additionally, 

efforts should be made to translate these advancements into 

clinical settings, ensuring widespread accessibility and 

usability of advanced imaging technologies for improved 

patient outcomes. 
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