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Abstract— In the aftermath of natural disasters, swiftly 

detecting individuals trapped beneath debris is crucial for 

successful rescue operations. This paper presents a Mobile 

Controlled Robot with advanced human detection capabilities 

designed to expedite search and rescue missions, emphasizing the 

importance of rapid response to save lives. Utilizing a YOLOv8 

model with 90% accuracy, the robot analyzes real-time images 

captured by a webcam to detect human forms and movements, 

triggering a buzzer alert to notify rescue teams upon identifying 

potential victims. The robot’s remote operation via a mobile 

interface enhances flexibility and adaptability in complex terrains, 

allowing rescue personnel to control it from a safe distance. 

Rigorous testing has demonstrated the system's efficacy and 

reliability in accurately locating trapped individuals, offering a 

promising solution to improve the efficiency and effectiveness of 

disaster response operations. 
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I. INTRODUCTION  

The use of technology in firefighting has evolved 
significantly over the past century, driven by the need to 
improve the safety and effectiveness of firefighting efforts. 
Early firefighting relied heavily on manual methods, with 
firefighters using basic tools such as buckets, axes, and ladders. 
The introduction of steam-powered fire engines in the 19th 
century marked a significant technological advancement, 
allowing for more efficient water delivery and greater reach.[1]  

In the 20th century, the development of motorized fire 
engines and the widespread use of two-way radios transformed 
firefighting. Motorized engines enhanced mobility and 
response times, while radios improved communication and 
coordination among firefighting teams. In the latter half of the 
century, innovations such as thermal imaging cameras enabled 
firefighters to see through smoke, locate victims, and identify 
hotspots, greatly enhancing their ability to conduct search and 
rescue operations safely and efficiently. 

In recent years, integrating advanced technologies such as 
drones, GPS, and real-time data analytics has further 
revolutionized firefighting. Drones equipped with thermal 

cameras and sensors can provide aerial views of fire scenes, 
offering critical information that can guide firefighting 
strategies. GPS and data analytics help in mapping out fire-
prone areas, predicting fire behavior, and optimizing resource 
allocation[2]. 

1.1. History of Deep Learning 

Deep learning, a subset of machine learning, has its roots in 
early work on artificial neural networks in the mid-20th 
century. Warren McCulloch and Walter Pitts introduced the 
concept of a neural network, inspired by the human brain, in 
1943. However, it wasn't until the 1980s and 1990s that 
significant progress was made, thanks to the development of 
algorithms such as backpropagation, which allowed for the 
training of multi-layer neural networks. 

The term "deep learning" gained prominence in the 2000s 
with the advent of more powerful computational resources and 
the availability of large datasets. Pioneering work by 
researchers such as Geoffrey Hinton, Yann LeCun, and Yoshua 
Bengio laid the foundation for deep learning as we know it 
today. Hinton's work on deep belief networks and LeCun's 
development of convolutional neural networks (CNNs) were 
particularly influential. 

Deep learning achieved significant breakthroughs in 
various fields, including image and speech recognition, natural 
language processing, and game playing. For instance, in 2012, 
a CNN known as AlexNet, developed by Hinton's team, won 
the ImageNet Large Scale Visual Recognition Challenge, 
demonstrating the superior performance of deep learning 
models over traditional machine learning techniques. This 
success spurred widespread interest and investment in deep 
learning research and applications.[3] 

 

1.2. Integration of Deep Learning with Robotics 

The integration of deep learning with robotics represents a 
major advancement in the field of artificial intelligence and 
automation. Early robotic systems relied on pre-programmed 
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instructions and simple sensor inputs, limiting their ability to 
adapt to dynamic and complex environments. The advent of 
deep learning has enabled robots to perceive, learn, and make 
decisions based on vast amounts of sensory data, mimicking 
human-like intelligence[4]. 

One of the first significant applications of deep learning in 
robotics was in computer vision, where CNNs allowed robots 
to recognize and interpret visual information with high 
accuracy. This capability is crucial for tasks such as object 
detection, navigation, and manipulation. For example, robots 
equipped with deep learning-based vision systems can identify 
and grasp objects with precision, navigate through cluttered 
environments, and interact with humans in more natural 
ways.[5] 

Beyond computer vision, deep learning has been applied to 
various aspects of robotics, including natural language 
processing, reinforcement learning, and sensor fusion. 
Reinforcement learning, in particular, has enabled robots to 
learn complex behaviors through trial and error, improving 
their performance over time[6]. Notable achievements include 
Google's DeepMind training a robot to play video games at a 
superhuman level and OpenAI's robotic hand learning to solve 
a Rubik's Cube.[7] 

 

1.3. Importance of Our Robotic System 

The integration of deep learning with robotics holds 
immense potential for enhancing disaster response and rescue 
operations. Natural disasters such as earthquakes, tsunamis, and 
hurricanes often result in large-scale devastation, with many 
individuals trapped beneath debris and rubble. Traditional 
search and rescue methods, while effective, can be slow and 
labor-intensive, often putting rescuers at significant risk. 

Our Mobile Controlled Robot represents a significant leap 
forward in the application of deep learning and robotics to 
disaster response. By combining advanced human detection 
capabilities with autonomous navigation and remote operation, 
our system aims to expedite search and rescue missions, thereby 
increasing the chances of saving lives. The use of a YOLOv8 
model with 90% accuracy in detecting human forms ensures 
high reliability in identifying trapped individuals, while the 
real-time image analysis and buzzer alert system facilitate 
prompt response by rescue teams. 

The remote operation feature, accessible via a user-friendly 
mobile interface, allows rescue personnel to control the robot 
from a safe distance, reducing the risk to human life and 
enhancing operational flexibility. This capability is particularly 
crucial in unstable and hazardous environments where direct 
human intervention may be dangerous. 

1.4. Aim of the Project 

The primary aim of our project is to develop a robust and 
reliable robotic system that can assist in search and rescue 
operations following natural disasters. By leveraging deep 
learning for accurate human detection and integrating it with 
advanced robotics and remote control capabilities, we seek to 
improve the speed and effectiveness of rescue missions. Our 
goals include: 

1- Enhancing Detection Accuracy: Utilizing state-of-the-
art deep learning models to achieve high accuracy in 
identifying human presence amidst debris. 

2- Improving Safety: Minimizing the risk to rescue 
personnel by enabling remote operation and 
autonomous navigation of the robot in hazardous 
environments. 

3- Increasing Efficiency: Streamlining search and rescue 
operations through real-time data analysis and prompt 
alert systems, thereby reducing response times. 

4- Flexibility and Adaptability: Designing a versatile 
robotic system that can adapt to various disaster 
scenarios and evolving conditions, ensuring optimal 
performance in diverse environments. 

Through this project, we aim to contribute to the broader 
field of disaster response technology, providing a valuable tool 
that can significantly enhance the capabilities of rescue teams 
and ultimately save more lives in the critical aftermath of 
natural calamities.  

II. RELATED WORKS 

This study [8] explores the significance of incorporating 

hand gesture recognition in natural human-robot interaction 

(HRI) to overcome communication barriers and enhance 

robotics development. It examines the process of hand gesture 

recognition using both monocular cameras and RGB-D 

cameras, encompassing data acquisition, hand gesture 

detection, segmentation, feature extraction, and gesture 

classification. The paper provides a comprehensive analysis of 

algorithms for hand gesture recognition in HRI and discusses 

experimental evaluations. Additionally, it addresses the need 

for advancements to improve current hand gesture recognition 

systems, aiming for more effective and efficient human-robot 

interaction[9]. Overall, the study highlights the potential of 

hand gestures as natural, intuitive communication methods in 

robotics and emphasizes the importance of further research in 

this area for advancing HRI capabilities. 
This study [10] highlights the critical advancements in face 

recognition technology driven by deep learning models, 
enabled by the availability of large and complex training 
datasets. However, existing datasets sourced from news sites or 
social media platforms are limited in their applicability to 
advanced security, forensics, and military domains due to 
resolution, range, and viewpoint constraints. To address this 
gap, the study introduces the creation of the first and second 
subsets of a large multi-modal biometric dataset tailored for 
research and development (R&D) of biometric recognition 
technologies in challenging conditions. The dataset comprises 
over 350,000 still images and 1,300 hours of video footage from 
approximately 1,000 subjects, collected using various cameras 
including Nikon DSLR, commercial surveillance cameras, and 
specialized long-range R&D cameras mounted on UAV 
platforms. The primary objective is to facilitate the 
development of algorithms capable of accurately recognizing 
individuals at ranges of up to 1,000 meters and from elevated 
viewpoints, supporting critical applications in security, 
forensics, and military domains[11]. 
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This study [12] provides an in-depth analysis of the 
evolution of YOLO (You Only Look Once) as a central real-
time object detection system widely used in robotics, driverless 
cars, and video monitoring applications. The analysis spans 
from the original YOLO to subsequent iterations such as 
YOLOv8, YOLO-NAS, and YOLO with transformers. The 
study delves into the innovations and contributions introduced 
in each iteration, covering changes in network architecture, 
training techniques, and post-processing methods. Standard 
metrics for evaluation are described, and the study discusses the 
evolution of YOLO in terms of performance and efficiency. 
Finally, the study offers insights into the future of real-time 
object detection systems, highlighting potential research 
directions for further advancements in the field. 

This study [13] provides a comprehensive overview of 
object detection in the realm of computer vision, highlighting 
its significance and various applications across fields such as 
security, military, transportation, and medical sciences. Deep 
Convolutional Neural Networks (DCNNs) are recognized for 
their remarkable performance in object detection tasks, 
alongside other applications like video processing, image 
segmentation, and speech recognition. The review covers 
different aspects of object detection, including frameworks, 
backbone convolutional neural networks, common datasets, 
and evaluation metrics. It acknowledges the evolution of deep 
learning algorithms and their significant impact on improving 
object detection model performance, while also recognizing the 
continued relevance of conventional methods. The study 
identifies future research challenges in designing deep neural 
networks for object detection and concludes with a comparison 
of object detection model performance on standard datasets like 
PASCAL VOC and MS COCO, drawing insightful conclusions 
from the analysis[14]. 

This study [15] proposes a method to measure the size of a 
predefined region in video footage and count the number of 
people within that area in real-time, aiming to ensure 
compliance with capacity rules in indoor spaces, particularly 
relevant during the COVID-19 pandemic. The method involves 
predetermining the borders of the region, identifying and 
counting people within it, and estimating the maximum 
capacity based on the size of the area. The You Only Look Once 
(YOLO) object detection model is utilized for this purpose, 
with pre-trained weights from the Microsoft COCO dataset 
used to identify and label individuals. The study evaluates the 
performance of different YOLO models, analyzing metrics 
such as mean average precision (mAP), frames per second 
(fps), and accuracy rate for person detection within the 
specified region. Results indicate that the YOLO v3 model 
achieves the highest accuracy rate and mAP scores, while the 
YOLO v5s model achieves the highest fps rate among non-Tiny 
models. 

This [16] study addresses the critical task of fallen person 
detection (FPD) for ensuring individual safety, recognizing the 
limitations of existing deep-learning models such as poor 
feature extraction, inadequate utilization of contextual 
information, and high computational requirements. To 
overcome these challenges, the study proposes a novel  

lightweight detection model called Global and Local You-
Only-Look-Once Lite (GL-YOLO-Lite), which integrates 
global and local contextual information using transformer and 
attention modules within the YOLOv5 framework. The model 
features a stem module to replace the original focus module, rep 
modules with re-parameterization technology, and a 
lightweight detection head to reduce redundant channels. 
Additionally, the study introduces a large-scale, well-formatted 
FPD dataset (FPDD). Experimental evaluation on both FPDD 
and Pascal VOC datasets demonstrates that GL-YOLO-Lite 
outperforms state-of-the-art models, achieving significant 
improvements in mean average precision (mAP) ranging from 
2.4 to 18.9 on FPDD and 1.8 to 23.3 on Pascal VOC. 
Furthermore, GL-YOLO-Lite maintains real-time processing 
speeds of 56.82 frames per second (FPS) on a Titan Xp and 
16.45 FPS on a HiSilicon Kirin 980, validating its effectiveness 
in real-world scenarios. 

III. DATASET 

The dataset used for training, validation, and testing of the 
Mobile Controlled Robot’s human detection capabilities 
consists of annotated images from various locations, each 
labeled with human presence. It is divided into three subsets: a 
train set comprising 4407 images (80%), a validation set with 
1071 images (20%), and a minimal test set of 5 images. All 
images are resized to 640x640 pixels for uniformity. Data 
augmentation techniques are applied to enhance dataset 
diversity, including 90° rotations (clockwise and counter-
clockwise), exposure adjustments between -20% and +20%, 
and adding noise to up to 8% of the pixels. These augmentations 
ensure the model can generalize well to various disaster 
scenarios and perform reliably under different conditions.[17] 

IV. METHODOLOGY 

we employ YOLOv8 as the core object detection algorithm 
for human detection in the Mobile Controlled Robot. The 
YOLOv8 model is trained on the annotated dataset of images 
containing humans in diverse environments. During training, 
the model learns to predict bounding boxes and class 
probabilities for human instances within the input images. We 
utilize transfer learning by initializing the YOLOv8 model with 
pre-trained weights on large-scale datasets such as COCO or 
ImageNet, allowing the model to leverage knowledge learned 
from generic object detection tasks. The training process 
involves optimizing the model's parameters using 
backpropagation and stochastic gradient descent (SGD) 
algorithms to minimize the detection loss function, which 
combines localization loss and classification loss. Once trained, 
the YOLOv8 model is evaluated on a separate validation 
dataset to assess its performance using evaluation metrics such 
as precision, recall, F1 score, IoU, and mAP. Finally, the trained 
YOLOv8 model is deployed onto the Mobile Controlled Robot, 
where it performs real-time human detection using input from 
onboard cameras. The detected humans are then communicated 
to rescue teams via auditory alerts, facilitating prompt response 
and rescue operations in disaster scenarios. 
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Fig.1. Our Proposed Methodology. 

 

4.1. YOLO Algorithm 

The YOLO (You Only Look Once) object detection 
algorithm represents a breakthrough in computer vision, 
offering real-time detection of objects in images or videos with 
impressive accuracy. Unlike traditional object detection 
methods that require multiple passes over an image, YOLO 
frames object detection as a single regression problem, directly 
predicting bounding boxes and class probabilities from a single 
neural network. YOLO divides the input image into a grid and 
assigns each grid cell responsibility for predicting bounding 
boxes and class probabilities within its spatial region. This grid-
based approach enables YOLO to achieve remarkable speed 
while maintaining high accuracy, making it suitable for real-
time applications. However, earlier versions of YOLO suffered 
from limitations in detecting small objects and precise 
localization due to their coarse grid granularity and reliance on 
a single-scale feature map. 

4.2. YOLOv8  

YOLOv8, an evolution of the YOLO algorithm, addresses 
these limitations by introducing several architectural 
improvements and optimizations. YOLOv8 utilizes a larger 
backbone network, typically based on variants of Darknet or 
ResNet, to extract more detailed features from the input image. 
This allows YOLOv8 to better capture fine-grained information 
necessary for accurate object detection, especially for small 
objects or objects with intricate features. Additionally, 
YOLOv8 employs feature pyramid networks (FPN) to generate 
multi-scale feature maps, enabling the model to detect objects 
of various sizes more effectively. Furthermore, YOLOv8 
incorporates advanced training techniques such as focal loss 
and data augmentation to enhance model robustness and 
generalization capabilities. These enhancements result in 
significant improvements in detection accuracy and 
localization precision compared to earlier versions of YOLO. 

4.3. Evaluation Metrics 

To assess the performance of the YOLOv8-based human 
detection model, several evaluation metrics are employed: 

4.3.1. Precision: Precision measures the proportion of true 
positive detections among all positive detections. It is 
calculated as the ratio of true positives (TP) to the sum of true 
positives and false positives (FP). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Where:                                                                                  (1) 

• 𝑇𝑃: True Positives 

• 𝐹𝑃: False Positives 

4.3.2. Recall: Recall, also known as sensitivity, measures 
the proportion of true positive detections among all actual 
positives in the dataset. It is calculated as the ratio of true 
positives (TP) to the sum of true positives and false negatives 
(FN). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

where:                                                                                 (2)                                                                                                    

FN is False Negatives: Ground truth bounding boxes that have 

an IoU less than a certain threshold with all predicted 

bounding boxes. 

4.3.3. Mean Average Precision (mAP): mAP is the average 
of the precision-recall curves across all classes. It quantifies the 
overall performance of the object detection model across 
different classes and detection thresholds. 

𝑚𝐴𝑃 =
1

𝐶
∑

𝐶

𝑖=1

𝐴𝑃𝑖  

where:                                                                                      (3)                                                                                              

• C is the number of classes. 

• 𝐴𝑃𝑖 is the Average Precision for class i. 

V. RESULTS 

The YOLOv8-based human detection model achieved 

promising results across multiple evaluation metrics. The mean 

Average Precision (mAP) score, indicative of the model's 

overall performance, was 95.3%. Furthermore, the model 

demonstrated high Precision of 92.6% and Recall of 86.7%, 

indicating its ability to accurately detect humans while 

minimizing false positives. 
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Fig.2. mAP results over epochs. 

 

 
 

Fig.3. Precision results over epochs. 

 

 
 

Fig.4. Recall results over epochs. 

 

Visual inspection of the model's inference on the test set 

further affirmed its effectiveness. Sample images from the test 

set showed the YOLOv8 model accurately detecting humans in 

various environmental conditions, including cluttered scenes 

and occluded individuals. The model exhibited robustness in 

detecting humans of different scales and orientations, 

highlighting its capacity to generalize well to diverse real-world 

scenarios. 

 

 
 

Fig.5. Inference results on the test set. 
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VI. CONCLUSION 

The development and evaluation of the YOLOv8-based 
human detection model represents a significant step forward in 
leveraging advanced technology to enhance search and rescue 
operations in disaster scenarios. The high accuracy and robust 
performance demonstrated by the model underscores its 
potential to facilitate prompt and effective response efforts, 
ultimately saving more lives in times of crisis. While further 
refinements and optimizations may be needed to address 
challenges in real-world deployments, the promising results 
obtained thus far highlight the transformative impact of 
integrating deep learning with robotics for humanitarian 
purposes. Moving forward, continued research and innovation 
in this field holds the promise of further improving the 
efficiency and effectiveness of disaster response efforts, 
ultimately contributing to a safer and more resilient society. 
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